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Executive Summary 

This deliverable presents the results of the Technical and Traffic Evaluation, and the User and 
Acceptance Evaluation of the L3Pilot project. For these evaluations, vehicle and questionnaire data 
were collected during the piloting operations of automated driving functions (ADFs) in L3Pilot. 
Results were generated separately for different types of ADF distinguished by three driving 
domains: motorway, urban, and parking. 

The goal of the evaluation was to derive the impact of SAE Level 3 ADF on various aspects related 
to the vehicle’s behaviour (i.e., own driving behaviour and interaction behaviour with other road 
users) in traffic, as well as aspects related to the user’s attitude towards the systems. Thus, it was 
decided that data should not be evaluated based on individual implementations, but on a merged 
dataset consisting of the data from all Pilot sites which perform harmonised piloting operations. To 
answer the research questions, data was collected from trips where the ADF could be activated 
and from baseline trips in which the ADF were switched off. However, the same setup was used for 
the trips active systems as well as for the baseline data. Given that the piloted vehicles were still 
prototypical systems, in most cases they had to be driven by professional drivers who could pre-
empt safety-critical situations. 

For the Technical and Traffic Evaluation, vehicle data was collected at 14 pilot sites and then 
provided to the research partners within the project. At each test site, raw data was transformed 
into the Common Data Format developed by L3Pilot. Research partners analysed the driving data 
to derive data-based answers to the research questions. For this, driving data was segmented into 
instances of driving scenarios such as Uninfluenced Driving, Following, Lane Change or Cut-In. 
For each instance of a driving scenario detected in the data, specific performance indicators were 
derived by an automated toolchain. Handling the data in a common format made it possible to 
utilise the same data processing toolchain for all pilot sites, thus ensuring that the calculation of 
performance indicators was identical for each Pilot site. For each individual pilot site, the derived 
performance indicators were uploaded to the consolidated database towards answering the 
research questions. To avoid any benchmarking between the systems by the different 
manufacturers, the database was set up in a way that it did not allow to identify which pilot site 
contributed which entries in the database. Only the partners providing the data could identify and, if 
necessary, modify the data they supplied. Parking data were evaluated individually per study and 
the results were combined. 

For the User and Acceptance Evaluation, harmonised questionnaires have been used which were 
translated into the required languages for the different pilot sites and managed using an online tool. 
The answers of participants were coded in a dedicated format and uploaded to a shared database, 
which was anonymised similarly to the vehicle data. Evaluation of user data was carried out by 
type of function and type of driver operating it: 

● Urban (professional drivers operating the vehicle and ordinary drivers as passengers) 

● Motorway with professional drivers 
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● Motorway with non-professional drivers (including Wizard-of-Oz operations) 

Besides the questionnaire, videos of the vehicle and the driver inside were analysed to assess 
their interaction with the ADF. For the analysis of take-over requests a video-based coding was 
applied. 

For motorway ADF, 2175 h of driving data within the operational design domain of the ADF and 
294 questionnaires (58 professional driver, 236 non-professional) were analysed, from which 
several main findings regarding technical and user-related research questions can be reported: 

● Automated vehicles drove at slower speeds compared to baseline across all evaluated 
scenarios. 

● While in automated mode, the vehicles kept significantly larger headway distances compared to 
baseline. 

● The lane keeping behaviour of the automated vehicles was found to be more stable than in 
baseline. 

● Automated vehicles spent more time in stable driving scenarios such as uninfluenced driving or 
following. However, this may partially be linked to the prototypical state of the evaluated ADF. 

● Drivers were generally positive about the ADF. 

● No motion sickness was reported, and drivers found the systems comfortable. 

● Professional drivers tended to be less positive about the system. However, system familiarity 
and driver type did not affect willingness to use the system. 

● In more than 60% of take-over situations it took less than 4 seconds before drivers reacted to 
the take-over requests and deactivated the function. The reaction time in 99% of situations was 
under 10 seconds. All the take-over requests happened in everyday driving situations. 

For urban ADF, the quantity of piloting data (1120 h) was small compared to the amount of data 
needed to cover the large variability of interactions at intersections, which made it difficult to 
evaluate the impact of automated driving at intersections. The main findings for urban ADF include: 

● For intersection scenarios, automated vehicles spent more time travelling through the 
intersection, suggesting a more careful behaviour while passing through or turning at an 
intersection. 

● Urban vehicles did not drive above the speed limit, whereas drivers in baseline did slightly. 

● Behaviour while following a lead vehicle did not differ significantly from the behaviour of human 
drivers in baseline, suggesting that automated vehicles would not interfere with the flow of traffic 
in urban areas. 

● In general, driving dynamics—both longitudinal and lateral accelerations—could be reduced 
while driving with an active ADF. 
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● Users were generally positive about the urban system, but slightly less so than users of the 
motorway system. 

● No motion sickness was reported by users experiencing the system. 

● The more users were familiar with urban automated driving, the more they were willing to use 
the system. 

For parking ADF, 3823 parking manoeuvres and 109 questionnaires were analysed. It was found 
that the systems took longer to complete the parking manoeuvres and they drove at a slower 
speed compared to manual parking. Still, drivers were in favour of the systems and considered 
them to be safe and useful. 

Besides the findings reported in this deliverable, the analysed data served as input for the impact 
assessments and socio-economic impact assessment reported in L3Pilot Deliverable D7.4 – 
Impact Evaluation Results. 

The applied methodology made it possible to analyse the behaviour of automated vehicles in traffic 
and how users accept the systems and interact with them. This analysis was carried out already at 
a stage before their market introduction, while avoiding benchmarking between the individual 
piloted systems. Such anonymised data merging and evaluation required substantial effort to 
ensure data quality already at the beginning of the data evaluation toolchain.  

Future work involving on-road tests with automated vehicles is recommended to focus more on 
long-term effects related to users of SAE L3 ADF by executing multiple drives per driver over a 
longer time span. Furthermore, an in-depth analysis should be carried out for situations at the edge 
of the operational design domain of such systems or in unexpected situations during their 
operation. For this, processes need to be established which allow sharing disaggregated and time-
series data within the project. However, at the same time, the processes need to be established 
such that they still prevent reengineering of systems or benchmarking between systems to ensure 
competitiveness and transparency within the automotive industry. 
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1 Introduction 

This chapter presents is an introduction to the L3Pilot project, starting with its motivation and 
objectives. Based on this, the scope and structure of the evaluation subproject is outlined and the 
relation between this and other L3Pilot deliverables is explained. Section 1.4 introduces the 
automated driving functions analysed. Since the COVID 19 pandemic occurred during the latter 
third of the projects, its impact on the piloting and the evaluation work is outlined in section 1.5. 

1.1 Motivation and Objectives for the L3Pilot Project 
Over the years, numerous projects have paved the way for automated driving (AD), allowing the 
driver to take his or her eyes off the road for at least parts of the journey. Significant progress has 
been made, but AD is not yet ready for market introduction. However, the technology is rapidly 
advancing and today is at a stage that justifies automated driving tests in large-scale Pilots. L3Pilot 
is taking the final steps before the introduction of automated cars in daily traffic. Drivers are used to 
Advanced Driver Assistance Systems (ADAS), and numerous vehicles are equipped with ADAS 
and active safety systems. 

Automation is not solved simply by integrating more advanced technology. This topic needs above 
all a focus on user behaviour as well as experience with automated driving systems. User 
acceptance is one of the keys to the success of AD on the market, as is an understanding of the 
legal restrictions which need to be discussed and solved first on a broader level. Furthermore, the 
operation of automated vehicles in mixed traffic needs to be studied to identify the impacts on 
safety or traffic flow, as deviating behaviour compared to the surrounding vehicles – even if it is still 
within the law – has an impact on the interactions with other traffic participants. 

The idea of vehicles controlling themselves by computer raises fears among the global population 
comparable to those in the late 1800s when motor vehicles were introduced. The lack of 
acceptance may hinder the introduction of automated driving despite its expectable potential for 
improving safety and efficiency. To overcome public concerns, automated vehicles (AV) need to be 
designed according to user needs; otherwise, they will not be accepted. AD systems will influence 
societies and peoples’ lives more than previous automotive innovations after the introduction of 
series production cars over a hundred years ago. L3Pilot plans to contribute to this change. 

The overall objective of the L3Pilot project was to test and study the viability of automated driving 
as a safe and efficient means of transportation, as well as explore and promote new service 
concepts to provide inclusive mobility. AD technology has matured to a sufficient level to motivate 
a final phase of road tests to answer the key questions before market introduction. These recently 
attained levels of maturity ensured an appropriate assessment of the impact of AD, what is 
happening both inside and outside the vehicles, how vehicle security can be ensured, and an 
evaluation of societal impacts and future business models. 

Recent work indicates how driver assistance systems and AD functions can best be validated by 
means of extensive road tests, with a sufficiently long operation time, to allow extensive interaction 
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between the driver and testable functions. The project carried out large-scale testing and piloting of 
AD with developed SAE Level 3 (L3) functions (Figure 1.1) exposed to different users and mixed 
traffic environments, including conventional vehicles and vulnerable road users (VRU), along 
different road networks.  

The data collected in these extensive pilots supported the main aims of the project to: 

● Lay the foundation for the design of future, user accepted, L3 and L4 systems, to ensure their 
commercial success. This will be achieved by assessing user reactions, experiences, and 
preferences for the AD systems’ functionalities. 

● Enable non-automotive stakeholders, such as authorities and certification bodies, to prepare 
measures that will support the uptake of AD, including updated regulations for the certification of 
vehicle functions with a higher degree of automation, as well as incentives for the user. 

● Create unified de-facto standardised methods to ensure further development of AD applications 
(Code of Practice). 

 

Figure 1.1: SAE Levels of Driving Automation J3016 (Copyright 2021 SAE International). 
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The consortium addressed four major technical and scientific objectives listed below: 

● Create a standardised Europe-wide piloting environment for automated driving. 

● Coordinate activities across the piloting community to acquire the required data. 

● Pilot, test and evaluate automated driving functions. 

● Innovate and promote AD for wider awareness and market introduction. 

1.2 Scope of the Subproject - Evaluation 
The L3Pilot project focused on large-scale piloting of ADFs, primarily L3 functions. The key in 
testing is to ensure that the functionality of the systems used is exposed to variable conditions, and 
performance is consistent, reliable, and predictable. This increases the probability to create a 
positive user experience. A good experience of using AD will accelerate acceptance and adoption 
of the technology and improve the business cases for different stakeholders.  

The L3Pilot consortium brings together stakeholders from the whole value chain, including OEMs, 
suppliers, academic institutes, research institutes, infrastructure operators, governmental agencies, 
the insurance sector, and user groups. More than 750 users tested 70 vehicles across Europe with 
bases in seven European countries: Belgium, France, Germany, Italy, Luxembourg, Sweden, and 
the United Kingdom. The project lasted for 50 months, road tests started in April 2019, and Piloting 
on variable road conditions took two years. 

The evaluation subproject had the responsibility of combining the data and insights gathered in the 
other subprojects and generating the project evaluation results from those inputs. Within the 
subproject, four different areas of evaluation were considered. These are: 

● Technical and Traffic Evaluation, focusing on aspects concerning technical aspects which 
can be measured from the vehicle, like the quality of staying in lane, as well as parameters 
which characterize how the vehicles behaves in traffic and interacts with other road users.  

● User and Acceptance Evaluation, dealing with the user’s interaction and experience with the 
tested ADF as well as user aspects which are beyond the piloting operations; this was 
investigated by executing dedicated studies on aspects like long-term behaviour or the public’s 
attitudes towards AD. 

● Impact Assessment, which analyses effects the introduction of automated driving will have on 
the areas of safety, efficiency and mobility, considering that automated driving needs to be 
introduced in mixed traffic. 

● Socio-Economic Impact Evaluation, which translates the assessed impacts of AD into 
monetary costs or benefits for society, deriving the overall balance between costs and benefits 
linked to the introduction of automated driving.  

The aspects of AD for the different areas of evaluation and the related levels of data aggregations 
are shown in Figure 1.2. Moving from the technical and user-related assessment to societal 
impacts initially requires analysis of data collected from single users and vehicles. To derive the 
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effects of automated driving in general, the findings need to be merged to fleet level allowing an 
aggregated data analysis. These aggregated findings can then be evaluated on a societal level, 
within Europe to derive impacts in the areas of safety, environment and mobility, which can then be 
merged to the overall cost benefit analysis for the introduction of AD in Europe.  

 

Figure 1.2: Fields of evaluation and aggregation level of data. 

1.3 Content of Deliverable and Relation to Other Deliverables 
This deliverable focuses on the evaluation of data acquired during the piloting activities within 
L3Pilot. To achieve this, several steps needed to be taken which have been described in several 
deliverables: 

● The aim is to answer the research questions (RQs) defined in D3.1 – From research 
questions to logging needs (Hibbert et al., 2018). The list of RQs compiled was used as a 
basis for defining which signals need to be logged from the piloted vehicles to answer the RQs. 
At this stage, it was not yet certain whether all the RQs defined could actually be answered with 
the data collected. Therefore, after the handover of the first batches of piloting data, the 
feasibility of the different RQs was reconsidered and is reported in this deliverable. 

● As the vehicles operated in the Pilot were not yet market ready, the study design needed to be 
adapted to the maturity and the experimental nature of the vehicles. To harmonise the study 
design across the different Pilot sites, D3.2 – Experimental Procedure (Penttinen et al., 2019) 
was generated, which provided guidelines and recommendations for each Pilot, enabling a 
consistent merging of the data collected from different sites. 
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● A summary of the piloting activities executed in L3Pilot is given in D6.5 – Reporting Outcomes 
(Andreone et al., 2021), providing insight into the piloted systems, the implementation of the 
study design, and the data collected. 

● The methods for the evaluation to be carried out in the Evaluation subproject were defined in 
D3.3 – Evaluation methods (Metz et al., 2019). 

● Building up on the available methods, a specific plan was defined in D3.4 – Evaluation Plan 
(Innamaa et al., 2020), which also provided further details and updates on the methodology. 
Together with D3.3 – Evaluation methods (Metz et al., 2019), it forms the direct basis for the 
assessment work performed in L3Pilot. 

● For the implementation of the methodology, we used a selection of tools developed during 
L3Pilot as described in D5.1 – Pilot Tools for L3Pilot (Nagy et al., 2018). Signals were 
transformed into a common data format (Nagy et al., 2018 & Hiller et al., 2019) which allowed 
the creation of a common toolchain for all partners working with data from the piloted vehicles 
(Nagy et al., 2018 & Hiller et al., 2020).  

● The experience gathered from the technical teams working on piloting data, quality checks, 
manipulation, and processing was also reflected in Deliverable D5.2 – Guidelines and 
Lessons Learned (Christen et al. 2021) - Guidelines and Lessons Learned on Pilot Tools and 
Data, where lessons learnt were gathered and clustered in three main chapters: Data Logging, 
Data Management and Data Analysis. 

● Data for answering the project RQs is stored and shared via the consolidated database (CDB), 
which enables pseudonymised sharing of data not allowing the identification of individual Pilot 
side. This process is described in D6.2 – Database for data Collection: Evaluation Format & 
common data set for future Research (Bellotti et al., 2019).  

This deliverable focuses on answering RQs concerned with technical aspects and the vehicle’s 
behaviour in traffic as well as user-related topics employing data collected during the piloting 
operations. Besides the piloting, further studies were executed focusing on relevant topics to 
create a comprehensive picture of the impacts of automated driving on traffic, user behaviour and 
society. 

● D7.1 – Annual quantitative Survey about user acceptance towards ADAS and Vehicle 
Automation (Nordhoff et al., 2021) describes the findings from a survey on conditionally 
automated driving (SAE L3) involving participants from countries all over the world. This study 
allows comparing potential users’ attitudes and acceptance towards automated driving in 
different countries.  

● D7.2 – L3/L4 Long-term study about user experiences (Metz et al., 2021) describes studies 
on the behavioural adaptation of users of automated driving functions utilising driving simulator 
and Wizard-of-Oz studies, which allow focussing on user-related aspects that could not have 
been studied in regular on-road piloting activities. 
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● D7.4 – Impact Evaluation results (Bjorvatn et al, 2021) reports the results of the impact 
assessment within the areas safety, mobility, and efficiency and environment, as well as the 
results from the socio-economic impact assessment by means of a cost-benefit analysis. The 
results from D7.4 utilise findings from the other mentioned deliverables, as well as this one 
wherever possible, to justify assumptions made for the impact assessment. 

1.4 Evaluated ADF 
SAE Level 3 automation does not require the driver to supervise the driving task, but the driver 
needs to be available as a fall-back layer for the system within a limited time span when the 
system issues a take-over request (TOR). If the driver does not respond properly to the TOR, the 
vehicle will perform a minimal risk manoeuvre. 

In the following, the different ADF evaluated in L3Pilot are described. These high-level descriptions 
of the evaluated systems depict the common bases of the systems. While all systems follow the 
description, the individual layout implementation and the resulting behaviour of the system may 
differ slightly. The detailed functionalities of the systems are undisclosed. 

1.4.1 Motorway Chauffeur & Traffic Jam Chauffeur 

L3Pilot considers two different ADF operated on motorways. One of them is an SAE Level 3 Traffic 
Jam Chauffeur, which allows the driver to hand over the driving task to the ADF without the need to 
supervise. The Traffic Jam Chauffeur operates on motorways (controlled access) and similar roads 
up to a speed of 60 km/h. Operation of the traffic jam ADF requires a leading vehicle to be present. 
In case a slow vehicle is in front of the ego-vehicle, the ADF can execute a lane change to a lane 
with faster flowing traffic. 

In contrast, the SAE Level 3 motorway chauffeur covers a speed range of up to 130 km/h on 
motorways and similar roads. The motorway chauffeur may either follow a leading vehicle or keep 
a speed below the speed limit. Depending on the system design, the motorway ADF may execute 
lane changes in order to drive at its desired speed. 

The evaluation in L3Pilot does not make a distinction between the Traffic Jam and Motorway ADF 
on a system level. Instead, if an evaluated system is currently in a driving situation which may be 
considered a traffic jam suitable for a Traffic Jam Chauffeur, the situation will be considered as a 
situation relevant for a Traffic Jam Chauffeur, even if the system would also allow for a full speed 
range operation on motorways. Hence, in the following no distinction will be made between these 
systems. Both are considered to be motorway ADFs, while a distinction between traffic jam 
situations and normal motorway driving is made on the driving scenario level (see Section 2.5.1). 

1.4.2 Urban Chauffeur 

The Urban Chauffeur targets stress-free driving in urban areas. With the Urban Chauffeur, the 
vehicle automatically follows the lane, starts and stops and handles lane changes – either for 
overtaking or to fulfil the navigation task – within cities. When coming to a crossing, the car handles 
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right and left turns, recognises oncoming traffic and VRUs, and selects the correct crossing path, 
even if no lane marking is present. 

1.4.3 Parking Chauffeur 

The Parking Chauffeur is a vehicle function that allows the user to request their vehicle to complete 
manoeuvring into and out of garages and driveways. The car either learns a fixed trajectory from 
the entrance of the house to the home garage and vice versa or determines a suitable manoeuvre 
to enter or pull out of a nearby parking position. This automated driving feature relieves the driver 
from recurring parking manoeuvres. Depending on the Operational Design Domain (ODD), the 
Parking Chauffeur has also been tested at SAE L3 or L4, i.e., without the need to hand over control 
of the vehicle to the human driver in case a fall-back manoeuvre is required. 

1.5 The Effect of COVID 
Most of the tests within L3Pilot were delayed due to the COVID-19 pandemic. These delays 
influenced the progress of the evaluation work. In particular, the performance of several tools for 
data evaluation had been planned to be validated during the development stage using preliminary 
Pilot data. Because of delays in admitting tested vehicles onto public roads, data was not available 
in this development phase for most Pilot sites. By the time Pilot operations were scheduled, the 
COVID-19 pandemic had severely impacted the work procedures within Europe and all operations 
were put on hold. After some time, depending on the local situation, Pilot operations could be 
continued under precautionary measures1.  

For several sites, data delivery to the evaluation subproject was delayed of several months, posing 
significant challenges. 

The data analysis process applied a common toolchain and a harmonised data format (see Hiller 
et al., 2019). Because this procedure had to work with data from all Pilot sites, extensive testing of 
the evaluation toolchain was required, especially as different partners had to agree on the methods 
for data anonymisation. The final round of testing could only be completed once data was available 
for all the Pilot sites, which could only be achieved by the end of 2020. This timing was still 
sufficient for ensuring the effectiveness of algorithms and tools and for validating the overall data 
quality. However, it was not possible to revise decisions on the data formats or to adapt the setup 
of the data sharing process, which were defined at a stage when only very limited amounts of 
preliminary data were available. 

                                                
1 For pilots conducted during the period of COVID-19 pandemic, safety precautions and measures were 
ensured. These included wearing face masks, allowing only two persons per vehicle, disinfection of the 
vehicle between drives, air conditioning switched on and windows lowered to encourage ventilation, driving 
breaks outside of the vehicles, and ensuring the participants were comfortable with continuing. 
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2 Methodology 

The following chapter describes the methodology behind the results presented in this deliverable. 
Therefore, it briefly repeats the methodology applied within L3Pilot, before going into detail about 
the technical & traffic assessment and necessary data processing, and detailing the applied 
methods for user and acceptance analysis. The applied methodology builds upon the results of the 
dedicated subprojects, summarised in the following deliverables: 

● D3.1 – From Research Questions to Logging Needs (Hibberd et al. 2018) 

● D3.2 – Experimental Procedure (Penttinen et al. 2019) 

● D3.3 – Evaluation Methods (Metz et al. 2019) 

● D3.4 – Evaluation plan (Innamaa et al. 2020)  

The following describes the most relevant aspects of the L3Pilot methodology and any changes to 
the approaches described in the deliverables. 

2.1 Overall Methodology in L3Pilot 
L3Pilot evaluation is based on the FESTA methodology (see the latest version of the FESTA 
Handbook, FOT-Net & CARTRE (2018)). However, as this methodology was designed to be 
applied to field-operational tests (FOTs) with market-ready products, it did not fully apply to studies 
with prototypical ADFs. Thus, some adjustment of the original “V” structure was needed to 
accommodate testing of prototype functionalities, such as ADFs, in real traffic. The Pilot nature of 
the tests in L3Pilot brings some practical and ethical limitations regarding the use of the automated 
vehicles and limits any firm conclusions drawn about their implementation in the real world, or their 
expected impacts. To generate valid conclusions regarding the impacts of the ADFs, it is important 
to consider all the principles used to collect the evaluation data and to carefully consider any 
ensuing conclusions. Consequently, L3Pilot adapted the original FESTA V to better describe the 
key steps of the project (Figure 2.1). Details of the changes made and reasons them, as well as a 
detailed description of each, step can be found in Deliverable D3.4 – Evaluation Plan (Innamaa et 
al., 2020). 
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Figure 2.1: FESTA V adapted to the L3Pilot project (Innamaa et al., 2020). 

The presented deliverable sums up the first four steps taken in the EVALUATE phase of the 
FESTA V, which starts with the test site wrap-up delivering the collected data and metadata for 
evaluation. Before the delivery, the Pilot sites handled the data processing converting their raw 
data into a common data format. Dedicated evaluation partners processed this data according to 
commonly agreed principles and tools. They also uploaded data to a CDB to be used later by the 
other evaluation partners for different evaluation areas. 

The evaluation of technical performance & cybersecurity aimed to understand the system as 
experienced by users in the field tests. For this, measures were evaluated which give an insight on 
technical aspects such as lane keeping performance. The results related to the technical 
performance are presented in this deliverable (Section 3). Due to the prototype nature of these 
products, cybersecurity was not evaluated. 

The evaluation of user acceptance aimed to understand users’ experience and acceptance of the 
tested ADF. The results related to user and acceptance which were derived from the piloting 
operations are presented in this deliverable (Section 4). 

Driving & travel behaviour evaluation aimed to understand the changes that the introduction and 
use of ADFs will lead to. These changes were reflected in the following phases of evaluation. 
Driving behaviour is addressed in this deliverable by means of an analysis of measures 
characterising the vehicle’s behaviour in traffic (Section 4). At a general level, travel behaviour 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 26 

  

evaluation is part of Deliverable D7.4 – Impact Evaluation Results Mobility impact assessment 
(Bjorvatn et al. 2021). 

The next phase of the evaluation assessed the impacts on safety, mobility, efficiency and 
environment and scaled them up to EU level utilising data and results from the driving & travel 
behaviour evaluation and the user acceptance evaluation. Finally, societal impacts were assessed 
using the results of the previous step in cost-benefit analysis. L3Pilot Deliverable D7.4 – Impact 
Evaluation Results (Bjorvatn et al. 2021) also reports these results. 

2.2 Data sharing 
The sharing of data between partners piloting the ADF and researchers answering the selected 
RQs is the central element for a pilot study involving several vehicle manufacturers. In the 
following, the given constraints for setting up such data sharing and the implemented solution are 
discussed. 

2.2.1 Constraints 

L3Pilot deals with systems enabling automated driving that have not yet been introduced to the 
market. At this stage, the systems are still confidential. Nevertheless, L3Pilot wants to ensure a 
data evaluation that is as thorough as possible to enable understanding of the effects automated 
driving will have on users, traffic and society already at this development stage. Consequently, 
certain measures need to be adopted to guarantee that no confidential information about the 
system is shared among the vehicle manufacturers and suppliers participating in the piloting or 
with third parties outside the project. Requirements for data sharing can be summarised as follows: 

● The data shared should not facilitate benchmarking between the piloted systems. 

● The data shared should not allow reverse engineering of ADF parameters. 

● Data available for answering the RQs should not be linked to individual Pilot sites. 

● For some PIs, special requirements of confidentiality might apply that restrict sharing 
information on a disaggregated level within the project. 

For setting up the data evaluation process two options were considered, which are also described 
in Deliverable D3.3 – Evaluation Methods (Metz et al 2019): the first one involves “merging of 
results” and consists of applying statistical tests on data sets regarding the individual Pilot sites for 
which a meta-analysis is then carried out. In contrast, the second approach “merging of PIs” would 
combine the available PIs per RQ in a common database and apply the statistical test on this 
collective dataset. 

As the harmonised study design applied at the individual Pilot sites allows for a merging of their 
data, Metz et al. (2019) recommended merging of PIs wherever possible. Merging of results was 
considered as a fall-back option in case certain constraints do not allow for the previous approach. 
For the User and Acceptance analysis, merging of PIs could be implemented by directly sharing 
the collected data, i.e., the individual participant’s answers to the questionnaire items. For the 
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Technical & Traffic analysis, the requirements for data confidentiality led to the decision that no 
time-series data from the individual sites could be shared with the entire consortium. PIs thus 
needed to be derived from the time series data which aggregate information per defined segments 
of trips (driving scenarios) or entire trips. All the PIs considered in the project, as well as their 
relation to the RQs, are described in D3.4 – Evaluation plan (Innamaa et al., 2020). 

2.2.2 Implemented data sharing process 

As recommended in Metz et al. (2019), merging of PIs was implemented for motorway and urban 
ADF, both for vehicle data and for questionnaire data.  

The chosen approach for merging data across the different Pilot sites required establishing a data 
handling and sharing process that met the requirements for not making Pilot sites identifiable and 
not facilitating benchmarking and reverse engineering. In the data evaluation process three 
different roles were defined for the partners involved in the data acquisition and data evaluation 
process: 

Pilot leaders are operators of Pilot sites who implement the study design, execute the pilots, and 
implement the recording of data from the piloted vehicles. 

Pilot data processing partners are partners involved in the evaluation of data who have the 
dedicated role of working in close collaboration with one or multiple Pilot leaders, which allows the 
sharing of required disaggregated or time-series data. Between Pilot leaders and data processing 
partners, individual non-disclosure agreements may have been set up to meet requirements for 
personal data protection and confidentiality. In general, the task of the data processing partners is 
to process and aggregate the piloting data to a stage at which it could be shared with other 
partners involved in the evaluation. 

Evaluation partners work with the aggregated data that has been merged across the different 
Pilot sites. They do not have access to any information that could reveal the identity of Pilot sites 
that contributed to individual entries in the general dataset.  

Between these roles, a data sharing and a merging process was established. A central tool for this 
process was the consolidated database, which allowed for controlled merging of data while at the 
same time hiding the identity of the individual Pilot sites to the evaluation partners. The structure 
and interfaces for the consolidated database are described in D6.2 – Database for data collection: 
evaluation format & common data set for future research (Bellotti et al., 2019) and (Hiller et al., 
2019). Nearly all partners involved in the evaluation took the role of a Pilot data processing partner 
for a limited number of Pilot leaders and of evaluation partner working with the data available in the 
consolidated database. 

The data processing and evaluation process can be summed up as shown in Figure 2.2. The start 
of the process is the acquisition of the raw vehicle data at the different Pilot sites. For the data 
acquisition, the individual Pilot sites implement the study design considerations elaborated by 
Pentinnen et al. (2019), which allows the merging of data across Pilot sites. The data gathered can 
be split into two items: vehicle data logged from the CAN-bus and other data communication 
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between subsystems of the piloted vehicles, as well as video data, and questionnaire data 
consisting of the participants’ answers to the questionnaire items. All Pilot site questionnaires are 
reported in Deliverable D3.3 – Evaluation Methods (Metz et al., 2019). 

 

Figure 2.2: Stages for data processing in L3Pilot. 

At this stage, vehicle data is recorded in formats that are proprietary to the individual Pilot sites, as 
the data is directly logged from the automated driving function. Data management is handled 
based on the internal processes at the Pilot leader. Before handing over the collected data to the 
data processing partner, it is converted to a common data format (CDF). Using the same data 
format for all Pilot sites allows for more harmonised processes between the data processing 
partners, as well as an easier interpretation of the results by the evaluation partners. The CDF for 
data logged from the piloted vehicles is described in D5.1 – Pilot tools for L3Pilot (Nagy et al., 
2018) and by Hiller et al. (2019). Questionnaire data is handled in tabular format. Conversion from 
the proprietary format to CDF is done by Pilot leaders, who also apply initial quality checks to the 
data delivered to the data processing partner. A second check of the data quality is then applied by 
the data processing partner, who examines whether the data can be successfully processed by the 
evaluation toolchain. 

The evaluation toolchain consists of a collection of MATLAB scripts hosted in a shared code 
repository. The initial version of the scripts was prepared by a dedicated team in L3Pilot. Since by 
the end of the initial tool development phase the entire toolchain had not been extensively tested 
with data from the different Pilot site, development was continued within the Evaluation subproject. 

The data uploaded to the CDB could then be queried by evaluation partners either via a graphical 
user interface or an application programming interface (API). The queried datasets contained the 
relevant PIs for vehicle data and questionnaire answers for user data. Based on these, the defined 
RQs could be answered. 
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As urban ADF have only been piloted by three Pilot sites and the chosen study designs resulted in 
considerable differences in the amount of data to be merged, which created a risk of an 
imbalanced dataset for evaluation as well as a greater risk of exposing the individual systems, a 
further step for obfuscating data ownership by means of bootstrapping was introduced. This 
process is further described in Section 2.5.1 and Annex 4. 

For parking systems, merging of results was considered, as each parking study would test different 
trajectories for the different parking systems, such that the disaggregated PIs would differ 
substantially between studies. Given that some of the parking studies had to be delayed until April 
2021, merging of results was also chosen for questionnaire data, simplifying the evaluation 
process. 

Lessons learnt from the data sharing processes established are reported in D5.2 – Guidelines and 
lessons learned (Christen et al., 2021). 

2.2.3 Available piloting data 

Piloting efforts in L3Pilot resulted in a unique and extensive basis for the evaluation of L3 ADFs. 
Piloting operations were executed at 14 Pilot sites operating in seven different European countries 
and recording data from more than 750 test subjects testing 70 vehicles. Some Pilot sites also 
tested cross-border operation of the evaluated ADF. An overview of the Pilot sites is shown in 
Figure 2.3. 

 

Figure 2.3: Pilot sites within L3Pilot. 
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The resulting data set can be characterised by the following statistics for the different piloted 
systems: 

Table 2.1: Vehicles and users per type of ADF. 

 Motorway ADF Urban ADF Parking ADF 
Piloted vehicles 70 6 8 

Test subjects 
of which: 

481 177 92 

Professional & safety drivers 143 17 4 

Ordinary drivers 338 0 85 

Users in a passenger seat 0 160 3 
 

● The piloting efforts for Motorway ADF comprise 400,000 km driven on motorway, roughly half in 
as baseline. 

● This data includes kilometres driven on motorways for data acquisition for dedicated traffic 
jam systems. (Especially, given that most of the piloting was done during the COVID-19 
pandemic, which resulted in overall lower traffic levels, traffic jam events were difficult to find 
for data acquisition.) 

● Data collection executed with traffic jam-only systems could not contribute to the baseline 
dataset, as the sensors and system setups were made specifically for low speed scenarios.  

● This exclusion of data resulted in 2267 h of motorway data that could be delivered from the 
Pilot leaders to the data processing partners.  

● From this data, 1808 h could be processed for upload to the CDB. Data was either not 
uploaded because it was out of the ODD of the piloted ADF, or issues with data quality did 
not make it possible to derive the required PIs. 

● For Urban ADF, 1120 h were driven within urban environments, including 130 h of baseline 
data collection 

● The delivered dataset comprised 638 h of data which were used for data evaluation. 

● An additional step for data processing was implemented, which ensured that all Pilot sites 
with urban ADF where weighted equally in the evaluated dataset, even though one of the 
Pilot sites contributed a significantly larger part of the overall dataset (see Section 2.5.1, 
Annex 4). 

● For Parking ADF, five experiments were executed at three different Pilot sites, adding up to 
3823 analysable parking manoeuvres. 
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2.3 Answering the Research Questions 
The first step according to the FESTA methodology was the definition of RQs, complemented as a 
key element by the specification of methods for answering. The process of defining these methods 
also required re-evaluating the feasibility of several of these RQs. 

2.3.1 Motorway & Urban ADF  

For urban and motorway ADF, the RQs were analysed based on the data provided by the CDB. 
Most RQs were answered by comparing performance indicators for situations labelled as baseline 
driving with situations where the ADF was active. Since many indicators did not fulfil the 
requirements of parametrical tests like ANOVAs or t-tests (e.g., no Gaussian distribution), non-
parametrical tests were used. For significant effects, additional information on the effect size is 
provided. Annex 1 lists all RQs for motorway and urban ADF and provides information on whether 
and how the RQs were analysed. 

For the urban use case, take-over requests (TORs) were not part of the Pilot site setup, so RQs 
regarding these were not analysed. As for incidents and energy consumption, this was not shared 
by all Pilot sites, so an analysis in this context was not possible. 

2.3.2 Parking  

For parking ADF, an aggregation of data that would allow for the use of the common database was 
applied, since the tested systems and studies differed somewhat. Instead, the common answer to 
the RQs is based on a combination of results coming from the different Pilot sites i.e. experiments. 
As described in 2.6.2.2, the experiments were fully analysed by the Pilot data processing partners, 
including statistical testing. Parking with ADF active and manual parking (i.e., baseline driving) are 
compared in the analysis. 

To combine results across Pilot sites, information on statistical significance and on effect size 
including a relative change was collected from the different experiments. Based on that 
information, the RQs were answered on the project level. Annex 1 lists the RQs relevant for 
parking ADF. 

2.3.3 User and Acceptance Evaluation Motorway and Urban ADF 

The User and Acceptance RQs were organised into several key themes, including user 
acceptance and trust of the systems, willingness to use and pay for the functionalities, measures of 
driver state (stress, distraction, fatigue, workload), user risk perception, driver engagement in non-
driving related tasks, user behaviour during and after take-over situations, and user motion 
sickness. The sub-set of RQs for the User and Acceptance Evaluation are shown in Annex 1, with 
more detailed derivatives of each presented in Deliverable D3.4 – Evaluation Plan (Innamaa et al., 
2020). 

Based on the specific RQs, and the fact that Pilot studies cannot provide the data to answer all the 
RQs, the project developed a multifaceted assessment approach to form a holistic view of users’ 
behaviours with, and acceptance, of the ADFs. These include data from a combination of 
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quantitative and qualitative data collection methodologies centred primarily around the Pilot 
studies, including user questionnaires, videos of the driving scene, recordings of the drivers’ head, 
hands, and posture during the pilot, and vehicle-based data. Data was also collected from 
supplementary studies, including driving simulator and Wizard-of-Oz studies, and a large-scale 
international survey. Each of these methods of data collection is introduced and discussed in the 
sections below. 

This multifaceted data collection and analysis approach is used regularly in FOTs or Naturalistic 
Driving Studies (NDS) investigating user behaviour. For example, UDRIVE (Lai et al., 2013; van 
Nes, Bärgman, Christoph, & van Schagen, 2019), SHRP2 (Dingus et al., 2015), ecoDRIVER 
(Jamson, Kappe, & Louw, 2014) and DRIVEC2X (Brizzolara et al., 2014) all relied on both 
subjective (attitude and behaviour questionnaires) and objective (vehicle and video) data in their 
evaluation, which were supplemented by interviews, focus groups, or self-confrontation sessions. 

One of the primary sources of data for the User and Acceptance Evaluation within L3Pilot was a 
Pilot site questionnaire, which gathered subjective data from participants at the 13 Pilot sites (for 
the full questionnaire see Deliverable D3.3 – Evaluation Methods (Metz et al., 2020)). This is a 
unique contribution of the L3Pilot project, as participants have had real-world experience with 
these ADFs, whereas previously, subjective data has been collected from participants either with 
experience only in simulated environments (cf. Madigan, Louw, & Merat, 2018), or with no hands-
on experience at all (cf. Kyriakidis, Happee, & de Winter, 2015). 

2.4 Experimental Procedure for the Pilots 
When designing the experimental procedures for a Pilot study, the difference between FOTs of 
close-to, or on-the-market products and pilots of prototype systems was acknowledged. These 
differences and how to take them into account were detailed in L3Pilot Deliverable D3.3 – 
Evaluation Methods (Metz et al., 2020). Experimental procedures, which are presented in detail in 
L3Pilot Deliverable D3.2 – Experimental Procedure (Penttinen et al., 2019), were developed to 
provide a solid base for the evaluation methodology and to ensure that the results from tests 
across all Pilot sites can lead to an L3Pilot-wide evaluation, considering the practical limitations of 
their implementation. Furthermore, the aim was to harmonise the evaluation criteria by providing 
detailed recommendations for the pilots, creating holistic evaluation results for the L3Pilot project. 

Finally, a set of practical recommendations was listed for the Pilot sites to finalise their 
preparations for the Pilot tests. These were reported in L3Pilot Deliverable D3.2 – Experimental 
procedure (Penttinen et al., 2019), and an update was made to the recommendations based on the 
feedback and remarks from the Pilot sites when the pilots were already ongoing (February–March 
2020) in L3Pilot Deliverable D3.4 – Evaluation Plan (Innamaa et al. 2020). 

Given the constraints to the operation of the piloting of motorway systems, the experimental 
procedures applied in L3Pilot can be summarised in three categories for systems operating on the 
motorway or in urban areas: 

● Studies on motorway ADF involving ordinary drivers in the driver’s seat 
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● Studies on motorway ADF with safety drivers in the driver’s seat 

● Studies on urban ADF with ordinary drivers as passengers 

All these studies contributed to the vehicle data for Technical and Traffic evaluation and to the 
questionnaire data for User and Acceptance Evaluation.  

Apart from the Piloting, Wizard-of-Oz (WoZ) studies have been executed primarily contributing to 
the studies on D7.2 – L3/L4 Long-term study About user experiences (Metz et al. 2021). As drivers 
filled in the same questionnaires as for the piloted motorway ADF, it was possible to merge WoZ 
questionnaires with motorway ADF questionnaires for ordinary drivers. Simulator studies reported 
by Metz et al. (2021) involved filling in the same questionnaire as well, but due to the nature of 
these studies, answers relating simulator studies were treated separately.  

2.4.1 Experimental procedure for Motorway ADF with ordinary drivers 

Most of the studies involving ordinary drivers in the driver’s seat included a driving time of 1 to 1.5 
hours per drive (ranging from 60 to 133 km). However, some drives were as short as 30 minutes, 
and some were as long as 6 hours. All studies were conducted in daylight with clear, cloudy, or 
light rain weather; there was no testing in extreme weather, heavy rain, or snow conditions, with 
limited trials conducted at night. 

In some studies, participants were allowed to take their eyes, hands, and mind off the driving task 
during the automated drive and to engage in a non-driving related task (NDRT), but in other 
studies this was not possible. Drivers were required to take-over control when prompted when they 
reached the end of the ODD of the piloted system. To request drivers to take-over, the vehicle 
provided both auditory and visual HMIs in all cases, although the designs of HMIs varied across 
systems, and the time at which the drivers were informed of an upcoming take-over request also 
varied. In addition, drivers were also informed when AD was available, again using both visual and 
auditory cues.  

Pre-experimental briefings were conducted in all studies, during which drivers were informed about 
the organisation of the experiment, system functions and limitations, how to activate and deactivate 
the ADF, and the route. They were instructed to respect the rules of the highway code during 
manual driving, and to keep safe and regulatory distances to the surrounding traffic. Where 
applicable, drivers were informed about the cameras installed in the vehicles. They were also 
informed about the role of safety drivers and whether they were allowed to perform an NDRT. In 
most studies, practice drives were conducted before the experimental drives. The objectives of the 
practice drives were to familiarise drivers with the dynamics of the vehicle, the activation and 
deactivation of the system, the manual drive and ADF, and to understand the capabilities and 
limitation of the vehicle. Practice drives lasted typically from 15 to 30 minutes, some on the 
motorway and others on a test track. 

The number of experimental drives per participant varied from one to three depending on different 
studies, where the time between studies ranged from days to months. Drivers were told that they 
had full responsibility for the vehicle during manual driving and should follow traffic regulations. 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 34 

  

When the ADF was available, they should activate the system. In some studies, drivers were 
allowed to engage in a non-driving related secondary task but were asked to take-over control 
when prompted. However, in some other studies, due to this not being permitted by the regulations 
because the tested vehicles were still in the prototype phase, drivers were asked not to engage in 
the secondary tasks but to monitor the road. All drivers were compensated for taking part in the 
study (unless the participant was a safety driver, see Section 2.4.2). 

Safety drivers were present in the vehicle unless it was Wizard-of-Oz study. When safety drivers 
were present, they usually sat in the front passenger seat, and in some cases a technician who 
monitored the system with screens was sitting in the back. The role of the safety drivers included 
monitoring for hazards, prompting the driver to take-over during critical situations, and in some 
cases, taking over control themselves (i.e., when the technician informed the safety driver that the 
system was no longer working), monitoring the system, and supervising the safety and appropriate 
conduct of the study. Otherwise, the safety drivers were asked not to converse with the drivers to 
minimise interruptions and distractions. Safety drivers only intervened in dangerous situations and 
technical failures, in which participants were instructed not to touch the driving controls and to let 
the safety driver drive. 

2.4.2 Experimental procedure for motorway studies with professional drivers 

For Pilot sites where it was not possible to operate the vehicle with an ordinary driver, the vehicle 
was driven and supervised by a professional driver. When the automated mode of the vehicle was 
activated, the safety driver continued supervising the vehicle to override the system if critical 
situations become imminent. For some systems, when executing lane changes during operation it 
was necessary for the safety driver to confirm the lane change decision of the vehicle before the 
lane change was executed. NDRT could not be executed by safety drivers during automated 
operation of the vehicle. 

For most of the Pilot sites it was also necessary to collect baseline data with professional drivers. 
In such cases safety drivers were not instructed to follow any particular driving style. Still, it should 
be noted that the safety driver collected baseline data with a prototype automated vehicle, so it 
was top priority not to be involved in critical situations. 

2.4.3 Experimental procedure for urban ADF 

For the urban ADFs, studies took place between September and November 2020. Studies were 
conducted on busy and non-busy multiple lane urban roads, including signalised and non-
signalised intersections, pedestrian crossings, traffic lights, and bicycle lanes. The speed limit of 
urban roads was 50 km/h. The urban ADF was able to detect VRUs such as pedestrians and 
cyclists. Studies were also conducted in daylight, cloudy, sunny, and light rain conditions, but not in 
extreme weather. 

The testing locations included Brussels, Aachen and Hamburg. The length of the test routes was 
2.4 km to 2.8 km per route, and the duration of the drives was 10 – 40 minutes (one or two laps). 
As most of the participants were passengers, visual and auditory signals and messages were 
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presented to the safety drivers for taking over controls and to inform the safety drivers when the 
AD system was available. 

Participants were either sitting in the front passenger seat or in one of the rear seat and were 
asked to focus, observe, and experience the urban ADF, but in some studies they were allowed to 
engage in a secondary task because they were passengers and not the driver. The pre-
experimental briefing informed the participants about their roles, test routes, and the duration of the 
study. They received a brief description of the urban ADF including capabilities (i.e. to detect 
VRUs), limitations (i.e., still a prototype and not at production level, not working in extreme 
weather). In some studies, participants were could ask questions during the experiment but were 
allowed to do so at the end. In some studies, participants were also asked to imagine that they 
were sitting in the driver’s seat and must be aware of the take-over requests from the vehicles. 
Practice drives were not applicable. 

Safety drivers in these studies were seated in the driver’s seat with a similar role to that of safety 
drivers while testing the Motorway ADF. However, as the participants were passengers, the safety 
drivers did not have to warn the participant or take-over control from the participant. The driver 
simply took over control of the car when requested to do so by the system, or when they felt that it 
was appropriate.  

2.5 Method for Technical & Traffic Assessment 
2.5.1 Motorway & Urban ADF 

For technical and traffic analysis, driving scenarios are the basic unit of analysis concerning driving 
behaviour. A driving scenario is a short period of driving defined by its main driving task (e.g., car 
following, lane change) or triggered by an event (e.g., an obstacle in the lane). A driving situation 
represents a single segment in time that is assigned to a certain driving scenario (Innamaa et al., 
2020). A Driving situation can be considered an instance of a driving scenario. Driving situations 
within different driving scenarios differ fundamentally, whereas situations of the same driving 
scenarios are similar. 

This means that for motorway and urban ADF, all time-series data logged during the on-road tests 
are divided into driving situations, which all belong to one of the defined driving scenarios. Multiple 
driving situations of one driving scenario can occur within a single log of driving data (Figure 2.4). 
The trips are separated into driving scenarios based on the logged signals. The main sources of 
information which are used for scenario detection are lane position, speed, surrounding vehicles 
and the lead vehicle. Figure 2.5 shows an example of the relation between measured lane position 
and the time headway to the lead vehicle and the detected driving scenarios. There is a repeated 
switch between the scenario Lane change, Following and Uninfluenced driving. 
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Figure 2.4: Exemplary sequence of scenarios within a trip. 

Performance Indicators (PIs) are defined for each driving scenario, and they describe driving 
behaviour in the scenario in a meaningful way. The defined PIs are calculated for every driving 
situation identified in the data. Figure 2.4 shows an exemplary sequence of driving scenarios within 
one trip with an example of one related PI for each scenario. 

 

Figure 2.5: Example of the relation between the measured lane position and time headway to the 
lead vehicle and the detected driving scenarios Lane change, Following and Uninfluenced driving. 
The example is derived from a trip on the motorway. 

The driving scenarios listed in Table.2.2 are used to cover driving on motorways and in urban 
areas. A detailed description of this approach and of the scenarios is available in Annex 2. As 
defined within D3.3 – Evaluation Methods (Metz et al., 2019), driving scenarios are mutually 
exclusive. In order to assure this for the motorway scenarios, a graph-based approach taking into 
account possible transitions is implemented. For this, scenarios are given a general priority, such 
that for instance a traffic jam situation will always be treated as a traffic jam, although it may also fit 
the criteria for following. The priority of scenarios is incorporated with the switches and minimum 
durations for scenarios to find the optimal sequence of scenarios in a trip. The algorithm is 
described in detail in Annex A2.1.6. 
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The scenarios Uninfluenced driving and Following a lead vehicle have the potential to vary 
substantially in their duration. Theoretically, the duration of uninfluenced driving can range from a 
few seconds up to more than an hour on an empty highway. There are several reasons why 
unwanted side effects of this wide range of scenario duration on the results should be avoided in 
the analysis: 

● As shown by Dozza et al. (2013), there is a direct impact of the duration of an analysed 
sequence on PIs measuring variation of a measure. 

● Without controlling for the duration, a scenario of a few seconds would have the same impact 
on the overall results as a scenario of a few hours. 

● It might be that the scenario duration varies systematically between conditions; in that case 
impacts due to changes in scenario duration and direct impacts on the indicators could not be 
differentiated. 

To ensure that the impact of scenario duration on the results is minimised, a process called 
chunking is applied: uninfluenced driving and car following scenarios are divided into sections of 10 
seconds’ duration and indicators are calculated per section. Figure 2.6 shows how instances of 
uninfluenced driving are cut-into several chunks with the same duration. In the end one piece 
remains, the duration of which differs in size from the other chunks. However, this difference is 
small and is therefore not expected to have an impact on the calculated PIs.  

 

Figure 2.6: Example of an applied chunking procedure. 

Table.2.2: Driving scenarios implemented to analyse driving on motorways and in urban areas. 

Scenario Definition Motorway Urban 
Uninfluenced 
driving 

The ego-vehicle is following its path without being influenced by 
objects located in or moving into its path. Uninfluenced driving is 
classified when no lead object is detected, or if the time THW 
between the ego-vehicle and lead object is more than 3.5 s. 
Also, uninfluenced driving is classified if the THW between the 
two vehicles is between 2 and 3.5 s and the lead object is 
driving faster than the ego-vehicle. The ego-vehicle’s speed 
must be higher than 5.56 m/s and all of these conditions must be 
met for more than 2 consecutive seconds. 
Uninfluenced driving scenarios are divided into sections of 10 s 
duration and PIs are calculated per section. 

X X 

Approaching a 
lead object 

The ego-vehicle is approaching an object located in its path, 
travelling at a lower speed. Approaching a lead object is 
classified when the THW between the ego-vehicle and a lead 

X X 
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Scenario Definition Motorway Urban 
object is less than 3.5 s and the ego-vehicle is travelling at a 
higher speed (>1.4 m/s) than the lead object. 
If a lead object is moving very slowly or standing still (less than 
1 m/s) then the scenario is classified as approaching a static 
object. The THW must then be less than 2 s to ensure that the 
quality of the lead object measurement is valid. 

Following a lead 
object 

The ego-vehicle is following a lead object. Following a lead 
object is classified when THW between the two vehicles is less 
than 2 s. Additionally, following a lead object is classified if the 
THW between the two vehicles is between 2 and 3.5 s and the 
speed difference between the two vehicles is within ±1.4 m/s. 
The ego-vehicle speed must be higher than 5.56 m/s and all of 
these conditions must be met for more than 2 consecutive 
seconds. 
Following scenarios are divided into sections of 10 s duration 
and PIs are calculated per section. 

X X 

Approaching a 
traffic jam 

The ego-vehicle is approaching a queue of vehicles in its lane 
travelling at a low speed. The 20 s before a traffic jam are used 
to classify this scenario. 

X  

Driving in a 
traffic jam 

The ego-vehicle is following a queue of vehicles travelling at a 
low speed (<60 km/h) for at least 180 s. 

X  

Lane change The ego-vehicle changes lane to the left or right. Lane changes 
of the ego-vehicle are derived from the lateral position of the 
ego-vehicle with respect to the position of the lane markings. 
When the left or right marking is crossed, a lane change is 
detected and its start and end points are determined. The 
starting point of the lane change is the point at which the car 
starts moving in the direction of the lane marking before crossing 
the marking. The end point of the lane change is the point at 
which the car stops moving away from the lane marking after 
crossing the marking. A maximum window size of 10 s before 
and after crossing the marking is set to limit start and end point 
respectively. Left and right lane changes are coded separately. 

X X 

Cut-in An object changes lane (or initiates a lane change) into the lane 
of the ego-vehicle such that the resulting scenario is following or 
approaching a lead object (cut-ins from the left and right lane are 
considered). 

X X 

Crossing 
(without conflict) 

The ego-vehicle is travelling across an intersection without being 
influenced by another object. 

 X 

Crossing with 
static object 

The ego-vehicle is travelling across an intersection with a static 
object located in its desired path. 

 X 

Crossing with 
lead object 

The ego-vehicle is travelling across an intersection while being 
influenced by a lead object. 

 X 

Crossing with 
laterally moving 
object 

The ego-vehicle is travelling across an intersection approaching 
a conflict zone, which it has in common with another object 
travelling laterally towards the path of the ego-vehicle. 

 X 

Turning (without 
conflict) 

The ego-vehicle is turning at an intersection without being 
influenced by another object. 

 X 
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Scenario Definition Motorway Urban 
Turning with 
static object 

The ego-vehicle is turning at an intersection with a static object 
located in its desired path. 

 X 

Turning with 
lead object 

The ego-vehicle is turning at an intersection while being 
influenced by a lead object. 

 X 

Turning with 
laterally moving 
object 

The ego-vehicle is turning at an intersection approaching a 
conflict zone, which it has in common with another object 
travelling laterally towards the path of the ego-vehicle. 

 X 

Overtaking of 
oncoming traffic 
(passive) 

The ego-vehicle is following its lane while a vehicle from the 
oncoming lane changes into the lane of the ego-vehicle with the 
intention to change back to its initial lane. 

 X 

Overtaking on 
oncoming lane 
(active) 

The ego-vehicle changes into the lane of the oncoming traffic, 
overtakes some obstacle and changes back to its own lane. 

 X 

Urban scenarios can depend significantly more on external factors (such as infrastructure) 
compared to those on motorways. This leads to the necessity of strictly sorting and prioritising 
scenarios in the urban context, which is directly coupled to the infrastructural circumstances. 
Keeping the principle of mutually exclusive scenarios, this means that the scenarios need to be 
prioritised in the detection as well as in the evaluation. Whereas the easiest approach would be to 
prioritise using the first detected scenario occurring at a specific intersection, within L3Pilot the 
focus is on those scenarios at intersections where an interaction in general, or more specifically 
with vulnerable road users (VRUs) such as pedestrians and cyclists, happens. 

For the algorithms within the urban evaluation, this leads to the highest priority of scenarios of 
crossing or laterally moving objects, as these create the highest amount of interaction and often 
include VRUs. Scenarios with static objects follow in the priority ranking. Static objects are often 
not VRUs; however, interaction of the ego-vehicle with these objects often requires strong 
reactions or moving out of one’s own lane, which makes them interesting from an evaluation point 
of view. The next scenarios in the priority ranking are crossing or turning with lead objects. They 
are not that highly ranked, because compared to the others, interaction with lead objects is often 
rather straightforward. If none of these scenarios occurs, the lowest prioritised scenarios of 
crossing or tuning without conflict are checked. Details on this can be found in A2.2.1.5. 

Independent of the urban or motorway use case for every scenario, PIs like average or maximum 
speed are extracted from the data. Besides those rather simple indicators that describe lag or 
variation of signals logged during the drive, there are a few indicators that require a more detailed 
explanation. 

Due to confidentiality and the fact that engines and types of fuel differed among pilot sites, the RQ 
on efficiency cannot be answered based on measured fuel consumption. Instead, a theoretical 
measure for the energy demand [kWh] based on driving resistance forces is considered. In the 
applied formula in Equation 2.1, measured speed 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 and accelerations 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 determine the 
estimated energy demand 𝐸𝐸. This estimate is independent of the characteristics of the vehicles 
used during the pilots. The focus is on estimating the effect of a changed driving style on the 
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energy demand of the vehicle. The energy consumption for the trip or a section is then calculated 
by computing the cumulative energy demand for the given distance. 

Equation 2.1: Energy demand 𝐸𝐸 calculated from the respective forces 𝐹𝐹. 

𝐸𝐸 = ∫ �𝐹𝐹 ∗ 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒�𝑑𝑑𝑑𝑑 = ∫ �(𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐹𝐹𝑎𝑎𝑒𝑒𝑟𝑟𝑟𝑟 + 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎)  ∗ 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒� 𝑑𝑑𝑑𝑑 

Equation 2.2: Air resistance of the vehicle. 

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 =
1
2
∗ 𝑐𝑐𝑤𝑤 ∗ 𝐴𝐴 ∗ 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒2  

Equation 2.3: Rolling resistance of the vehicle. 

𝐹𝐹𝑎𝑎𝑒𝑒𝑟𝑟𝑟𝑟 = 𝑓𝑓𝑎𝑎 ∗ 𝑚𝑚 ∗ 𝑔𝑔 

Equation 2.4: Force needed to accelerate the vehicle. 

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑒𝑒𝑎𝑎 ∗ 𝑚𝑚 ∗ 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 

The parameters used are listed in Table 2.3. 

Table 2.3: Parameters used for the energy demand calculation. 

Parameter Definition Value 
𝑐𝑐𝑤𝑤 ∗ 𝐴𝐴 Drag coefficient * reference area 0.83 𝑚𝑚²  

𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 Air density 1.2
𝑘𝑘𝑔𝑔
𝑚𝑚3 

𝑓𝑓𝑎𝑎 Rolling resistance factor 0.015 

𝑚𝑚 Vehicle mass 1400 𝑘𝑘𝑔𝑔 

𝑒𝑒𝑎𝑎 Factor for rotary masses 1.05 

There are several RQs that address the impact of ADF use on the frequency of critical driving 
situations. Such types of events are also called incidents or near crashes. In this analysis, 
potentially critical situations are detected in the continuous driving data by applying certain 
objective thresholds (cf. Benmimoun et al., 2011). The frequency of such situations is analysed for 
selected driving scenarios. The situations identified based on objective driving data are not verified 
via video. Table 2.4 shows the applied thresholds. Situations detected via the threshold for lateral 
dynamic incidents are not included in the analysis, because there were too many detected events 
in the database to be a realistic estimate for critical situations. 
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Table 2.4: Incidents and their definitions (Benmimoun et al., 2011). 

Incident type Criteria 

Distance incident Front Forward THW < 0.35 s and v < 20 km/h 
Forward THW < 0.5 s and v > 20 km/h 
Forward TTC < 1.75 s 

Side Distance to side vehicle < 0.5 m 

Dynamic incident Longitudinal Speed dependent ax between –6 m/s2 and – 
4m/s2 

 Lateral Speed dependent abs(ay) between 2.5m/s2 and 
9m/s2 

For motorway ADF, critical situations that occurred due to distances to rear traffic are not analysed 
based on the overall database but rather on an in-depth analysis for one selected Pilot site. This is 
done because of data quality issues in signals measuring the speed and position of rear traffic at 
some test sites. Due to the anonymised origin of the data, no reliable information can be derived 
for the rear traffic from the CDB. For the same reason, the RQ on driving behaviour of the rear 
traffic is also addressed by an in-depth analysis with data from one selected Pilot site only. 

In the analysis, the PIs calculated per trip or per driving scenario are used to compare the 
behaviour between manual driving (baseline) and driving with ADF active (treatment). This is done 
separately per scenario type. Other potentially influencing factors like driver type or speed limit are 
not considered in the analysis. 

As many of the analysed indicators do not fulfil the requirements of parametrical statistical tests, 
non-parametrical tests are used to compare baseline driving and driving with the ADF. Since such 
tests do not allow to include potential confounding factors like situational variables into the test, 
separate tests are calculated per indicator and driving scenario. Other situational factors are not 
included. Due to the overall large number of scenario instances, the statistical power is high and 
even minor effects can reach the 5% significance level. To provide information on the size of the 
reported effects, effect size calculated as Cohen’s D and the percentual change between ADF and 
baseline are reported. For Cohen’s D the following formula is used: 

Equation 2.5: Cohen’s D and the pooled standard deviation. 

𝐷𝐷 =
𝜇𝜇1 − 𝜇𝜇2

𝜎𝜎
 𝑤𝑤𝑤𝑤𝑑𝑑ℎ 𝑒𝑒𝑒𝑒𝑑𝑑𝑤𝑤𝑎𝑎𝑚𝑚𝑑𝑑𝑒𝑒𝑑𝑑 𝜎𝜎 𝑎𝑎𝑒𝑒 𝜎𝜎 = �

(𝑛𝑛1 − 1) ∗ 𝑒𝑒12 + (𝑛𝑛2 − 1) ∗ 𝑒𝑒22

𝑛𝑛1 + 𝑛𝑛2 − 2
 

And the change is calculated as: 
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Equation 2.6: Change in percent between baseline and ADF. 

𝐶𝐶ℎ𝑎𝑎𝑛𝑛𝑔𝑔𝑒𝑒 =
𝑚𝑚(𝐴𝐴𝐷𝐷𝐹𝐹) −𝑚𝑚(𝐵𝐵𝑎𝑎𝑒𝑒𝑒𝑒𝐵𝐵𝑤𝑤𝑛𝑛𝑒𝑒)

|𝑚𝑚(𝐵𝐵𝑎𝑎𝑒𝑒𝑒𝑒𝐵𝐵𝑤𝑤𝑛𝑛𝑒𝑒)|
 

For the urban analysis a bootstrapping was done to ensure a more balanced representation of all 
the Pilot sites while still ensuring confidentiality. The need for this step originated from the fact that 
there were only three Pilot sites, of which one collected substantially more driving hours than the 
other two combined. Simply pooling the data, as was done with the motorway, would have led to a 
situation where the results from a single Pilot site would have dominated the results. In the 
bootstrapping process, samples were drawn from each of the Pilot sites multiple times by the 
respective Pilot data processing partners, creating multiple datasets. The sample sizes were set so 
that after pooling the data samples the data represented all the three Pilot sites in a more balanced 
way. Because the sampled data might have revealed the source of the data, as the records of the 
smaller Pilot sites would have been repeated at much higher probability in the final data, a small 
amount of noise was added to the measured variables. 

The bootstrapping step ensured more balanced and confidential processing of the data but also 
complicated the interpretation of the results. Statistical testing of ADF vs. baseline differences had 
to be conducted based on the bootstrapped samples. Because of the balanced sampling, the 
variance in the bootstrapped estimates became larger and were no longer unbiased. In effect, this 
means that the tests are more conservative at detecting differences between ADF and baseline. 
On the other hand, if statistically significant differences were found, they should also be present in 
the original data. A detailed discussion on the process is given in Annex 4. 

Due to this bootstrapping process, additional statistical testing was necessary. Simply pooling 
samples for testing the difference between baseline and ADF would violate the assumption of 
independent observations. Consequently, the degrees of freedom in the non-parametric test would 
be large and the p-values possibly too small, exaggerating the type I error. Therefore, the 
difference between baseline and ADF with bootstrapped data is done using the mean values of 
each sampling round. These are than compared using a Mann-Whitney-U-Test. The change is also 
given using the change between the mean values over the means of all sampling rounds, thereby 
preserving the character of the bootstrapping approach. 

For the effect sizes, Cohen’s D is used because the overall means and standard deviations are not 
affected by pooling. For visualisation of the results, histograms are used (similar to the motorway 
analysis) which contain the data from all the sampling rounds. 

For quantifying the interaction between traffic participants, several measures are available. 
However, these measures are described on an absolute grid of an intersection as shown at the top 
of Figure 2.7. This data is not available from the recorded data at the urban Pilot sites as it is 
recorded from the perspective of the ego-vehicle. However, using the positions of the objects and 
the movement of the ego-vehicle (position, speed, heading angle), an absolute representation of 
the interaction between objects at intersections can be calculated. 
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Figure 2.7: Absolute (top) and relative (bottom) trajectories of four distinct interaction steps 
between ego-vehicle and VRU at an intersection. 

Since this process is computation intensive, a pre-filtering is done involving a coarse check for 
trajectories intersecting with the driven trajectory of the ego-vehicle. Only if an intersecting 
trajectory (or close pass-by) is found is the complete and accurate calculation carried out. 

Using the absolute representation of the intersection interaction achieved through this calculation, 
the measures representing this interaction can then be calculated. 

2.5.2 Parking  

For parking ADF, the analysis differs from what has been described for motorway and urban 
driving. The main reason for this is that there was quite some variation in the parking systems 
tested in the pilots. There were ADFs restricted to parking on private property (home zone 
parking), whereas other ADFs were capable of selecting suitable parking spots and parking 
alongside public roads. This resulted in different experimental approaches and different addressed 
parking manoeuvres. The evaluation of parking ADF was therefore not based on a large database 
collected at various test sites. Instead, the different test sites were treated as separate studies in 
which acceptance and functioning of parking ADFs were assessed with experimental approaches 
tailored to the specificities of the tested parking system. As a consequence, no common definitions 
or scripts were used to calculate PIs that describe driving behaviour while parking. Instead, the 
Pilot data processing partners implemented the scripts needed to compare the measured driving 
behaviour during parking for parking with the ADF active and manual driving. This was done 
individually per Pilot site, because only three Pilot sites contributed to the analysis of parking ADF 
and the experimental setups (e.g., tested parking manoeuvres, experimental environment) differ 
fundamentally between Pilot sites. Furthermore, the Pilot data processing partner also chose the 
appropriate statistical test procedure, as studies on parking also differed with respect to the chosen 
experimental approach. 

To merge the results across studies, for all analysed PIs information on the p-value, effect size and 
change in percent compared to baseline driving was shared based on a commonly used template. 
The overall results for parking ADF are based on this information. 
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2.5.3 Baseline for Technical and Traffic Evaluation 

To evaluate the impacts of AD, it is necessary to compare the relevant PIs with an appropriate 
baseline. The baseline should allow deriving a clear picture on the impacts if automated driving 
were introduced on public roads. The baseline for comparison should make up a representative 
driver population, collecting naturalistic driver data under the same operating conditions as for the 
collection of data with the piloted ADF (e.g., in terms of locations and driving behaviour). 

Automated driving is realised through state-of-the-art technology. The most relevant factor for this 
is greatly improved capabilities for environment perception using sophisticated sensors such as 
LIDAR or computer vision. This capability for environment perception allows for more in-depth 
analysis of the data recorded, such as the segmentation of data recorded in the driving scenario 
and the computation of more sophisticated PIs for evaluation. The consequence is that baseline 
data also needs to be recorded with vehicles with the same environment perception. As pre-series 
automated driving technology is costly and its operation in public traffic is bound to legal 
constraints, some restrictions affected the collection of baseline data. 

The requirements for the collection of baseline data have been defined by Penttinen et al., (2019): 

● A sufficient amount of baseline data should be collected covering all relevant driving scenarios 
for analysis, as well as environment conditions experienced in treatment. 

● If possible, baseline data should be collected with not too small a group of ordinary drivers 

● Vehicles for baseline collection should be the same or comparable to those for treatment. 

● The format of the logged dataset should be comparable. 

● Continuously active ADAS like ACC should be inactive for baseline collection. 

Two practical options for baseline collection were considered: 

1. Collection of baseline data as part of a single study with participants contributing to both 
baseline and treatment data collection. 

2. Separate collection treatment and baseline data; baseline data collection preferably with non-
professional drivers. 

Depending on the Pilot site, both options were considered. Given the legal constraints for the 
operation of vehicles with AD capabilities and environment perception, several Pilot sites were only 
able to use professional drivers for the acquisition of baseline data. As a result, the driving may not 
be completely representative of how average human drivers would drive. The safety driver’s task is 
to operate the vehicle safely to avoid any damage to the vehicle or others. Thus, it is likely that the 
safety driver will respond very quickly to safety-critical situations, possibly even pre-empting such a 
situation before it becomes imminent. A further relevant question is whether normal driving 
behaviour of safety drivers differs considerably. Safety drivers did not receive any special 
instructions, apart from those relevant to safety on any particular behaviour. The implemented 
pseudonymised approach for vehicle data, which was implemented to avoid benchmarking, does 
not make it possible to compare professional drivers’ baseline behaviour to that of ordinary drivers. 
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Questionnaire answers by professional drivers are separated from those provided by ordinary 
drivers. 

Of the 400,000 kilometres worth of data collected for motorway systems, half was recorded as 
baseline. This includes driving efforts which were undertaken to collect data with traffic jam-only 
systems. Data outside the ODD of traffic-jam specific systems could not be used as general 
baseline data, given the test setup and constraints to the systems’ capabilities outside the ODD. 
For urban systems, of the 1120 hours of driving data, 130 hours of baseline data was collected. 
For parking systems, the number of baseline experiments is reported with the results. 

2.5.4 Processing of Vehicle Data 

In the following, the approaches to processing the data collected in the pilots are given separately 
for motorway as well as urban ADF and parking ADF. 

2.5.4.1 Motorway & Urban ADF 

For the Technical & Traffic Evaluation, the data logged in a single vehicle (CAN-data, videos) was 
analysed stepwise. The evaluation workflow is illustrated in Figure 2.8. 

The starting point for this process was time-series data logged during the test drives. At the Pilot 
sites, this data was converted into a data format commonly defined and used in L3Pilot (see D5.1 – 
Pilot Tools for L3Pilot, Nagy et al., 2018). Then, the data was transferred to the Pilot data 
processing partners. Here, after data quality checks, scripts developed within L3Pilot were run on 
the data. These scripts calculated derived measures and identified driving scenarios and further 
relevant situations in a harmonised way (see D5.1, Nagy et al., 2018). By using the same scripts 
on data logged at various Pilot sites, it was ensured that the identified driving scenarios and the 
analysed PIs would be comparable across Pilot sites. 

For motorway and urban ADFs, after processing the data by the Pilot data processing partners, 
relevant performance indicators were extracted from the data per trip and uploaded to a cloud-
based database. The database contained tables with indicators calculated per trip (like average 
energy consumption) and indicators calculated per driving scenarios (like average speed). The 
database was defined in a way that it was not possible to trace from which Pilot site the data 
originated. By this, it was ensured that confidentiality was kept and that it was not possible to 
compare results among Pilot sites. 

Urban data processing implemented an additional bootstrapping step before the data upload (cf. 
Section 2.5.1.). This meant that a few further steps were performed before the upload of the urban 
data. Firstly, the sample sizes had to be derived for each Pilot site. Secondly, using these 
aggregated sample sizes, the bootstrapping process could be performed locally at each Pilot data 
processing partner and finally, the bootstrapped data could be uploaded. 

After upload of all data by the Pilot data processing partners, the complete data set is downloaded 
and used for Technical & Traffic analyses and as input to impact assessment. 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 46 

  

 

Figure 2.8: The overall workflow for Technical and Traffic evaluation in L3Pilot. 

During the described process there were three data sets that differed with regards to level of detail, 
respectively the amount of information that they contained and regarding access rights. The 
process started with the dataset logged in the vehicles. These datasets differed between Pilot sites 
with regard to e.g. format and structure and containing multiple signals but also video and relevant 
meta data. The raw data sets were stored on the premises of the vehicle owners. The raw time 
series data logs were converted into the common data format by the vehicle owners and 
transferred to the Pilot data processing partners. This yielded the second data set. Finally, as the 
third set, processed data were stored in a CDB, accessible to the evaluation partners. The 
complete dataset for the combined analysis for the motorway ADF contained data from 12 Pilot 
sites across Europe, resulting in over 2175 hours of motorway data within the ODD for the analysis 
of the ADFs. 

2.5.4.2 Parking  

For parking ADF, the process and the analysis differ compared to Motorway and Urban. There are 
several reasons for this: 

● The data is logged per parking manoeuvre and not per trip with multiple scenarios. 

● The functions are tested in dedicated experiments and not during experimental trips with or 
without the function active. 

● The signals available for analysis (e.g., to evaluate the precision of the manoeuvres) vary 
between Pilot sites and depends on the function. 

● The setups of the experiments (e.g., the types of parking manoeuvres included) vary between 
Pilot sites. 

The data logged in the experiments on parking were provided to the evaluation partners 
responsible for the analysis. This was not done in a common data format; instead the format was 
agreed on individually between vehicle owner and evaluation partner. The evaluation partner 
analysed the parking data with respect to the RQs. This includes the full process from data pre-
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processing to statistical testing. The details of how this was done (e.g., how the start and end point 
of a manoeuvre is defined) was decided by the evaluation partners based, for instance, on the 
functionality, investigated manoeuvre types and on the experimental setup. 

2.5.5 Database and Data Filtering  

All the results are based on data collected at various Pilot sites, pre-processed by the Pilot data 
processing partners and uploaded to the CDB. Table 2.5 gives an overview of the dataset used for 
the analyses. 

As described earlier, the process for scenario detection and PI calculation for motorway and urban 
ADF is completely automatised. On the highest level and for all analyses, the complete dataset is 
filtered in such a way that only the relevant road category (motorway or urban area) and the 
conditions (baseline and ADF active) are included. 

Furthermore, filtering criteria are implemented at the level of the driving scenario to avoid including 
obviously unreliable scenario instances. The main inclusion and exclusion criteria are set, first 
based on the duration of the detected scenarios, allowing unrealistically short instances to be 
excluded. Table 2.5 lists the different scenarios, used inclusion / exclusion criteria, and the number 
of instances remaining after filtering. The number of scenario instances listed in the result sections 
can be lower than the number shown in Table 2.5 because not all PIs are available for every 
scenario instance (e.g., TTC is not always defined). 

Throughout the analysis, unrealistically short scenario instances are excluded from the data. For 
this, the following filter criteria are used: 

● Trip-based indicators: minimum overall duration of included trip sections is 5 minutes. 

● Cut-in scenarios: minimum duration of included scenario instances is 0.9 seconds. 

● Approaching a traffic jam and driving in a traffic jam: minimum duration of included scenario 
instances is 20 seconds. 

● All other scenario types: included scenario instances have a duration of at least 2.0 seconds. 
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Table 2.5: Impact of applied filter criteria on the database for motorway ADF. 

  N instances Baseline N instances ADF N instances Total 
Before 
filtering 

After 
filtering 

% 
kept 

Before 
filtering 

After 
filtering 

% 
kept 

Before 
filtering 

After 
filtering 

% 
kept 

Uninfluenced 
driving 

122,234 99,757 81.6 232,517 190,979 82.1 354,751 290,736 82.0 

Following 78,995 64,740 82.0 178,247 150,066 84.2 25,7242 214,806 83.5 

Approaching 
a lead vehicle 

17,927 17,859 99.6 16,257 16,184 99.6 34,184 34,043 99.6 

Cut-In 2,394 2,391 99.9 4229 4,227 100.0 6,623 6,618 99.9 

Lane change 30,288 26,732 88.3 27,151 25,141 92.6 57,439 51,873 90.3 

Approaching 
a traffic jam 

126 125 99.2 266 266 100.0 392 391 99.7 

Driving in 
traffic jam 

487 390 80.1 2,968 1,976 66.6 3,455 2,366 68.5 

Trip section 1,460 1,191 81.6 3,816 3,007 78.8 5,276 4,198 79.6 

Similar filtering criteria were applied for the urban use case and analysis. The following criteria 
were used: 

● Trip-based indicators: minimum overall duration of included trip sections is 10 seconds 

● Cut-in scenarios: minimum duration of included scenario instances is 0.9 seconds. 

● Intersection scenarios: minimum duration of included scenario instances is 0.5 seconds. 

● All other scenario types: minimum duration of included scenario instances is 2 seconds. 

Table 2.6: Impact of applied filter criteria on the database for urban ADF. 

 N instances Baseline N instances ADF N instances Total 
 before 

filter 
after 
filter 

% 
kept 

before 
filter 

after 
filter 

% 
kept 

before 
filter 

after 
filter 

% 
kept 

Approaching a 
lead vehicle 

7,051 6,761 95.9 5,775 5,634 97.6 12,826 12,395 96.6 

Approaching 
static object 

93,702 14,077 15.0 5,526 1,009 18.3 99,228 15,086 15.2 

Crossing without 
Conflict 

14,913 14,913 100 1,237 1,237 100 16,150 16,150 100 

Crossing with 
lead object 

60,058 59,991 99.9 1,1606 11,579 99.8 71,664 71,570 99.9 

Crossing with 
laterally moving 
object 

96,412 96,176 99.8 111,807 111,557 99.8 208,219 207,73
3 

99.8 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 49 

  

 N instances Baseline N instances ADF N instances Total 
Following a lead 
object 

5,517 55,17 100 1,157 1,155 99.8 6,674 6,672 99.9 

Lane change 21,301 17,217 80.8 16,085 14,125 87.8 37,386 31,342 83.8 

Overtaking with 
oncoming traffic 
active 

30,759 28,375 92.3 4,990 4,169 83.6 35,749 32,544 91.0 

Overtaking with 
oncoming traffic 
passive 

23,741 685 2.9 5,720 93 1.6 29,461 778 2.6 

Turning without 
conflict 

351 351 100 423 399 94.3 774 750 96.9 

Turning with lead 
object 

11,378 11,378 100 1,347 1,347 100 12,725 12,725 100 

Turning with 
laterally moving 
object 

15,477 15,472 99.9 2,451 2,450 99.9 17,928 17,922 99.9 

Uninfluenced 
driving 

19,219 19,219 100 15,136 15,136 100 34,355 34,355 100 

For the analysis of parking ADF, data from five studies conducted at three different Pilot sites can 
be used. The experimental setup at each Pilot site was specific to the parking scenario being 
tested and in principle differed a lot among studies (ego-vehicle’s initial approaching speed, 
parking slot sizes, presence/absence of other parked vehicles adjacent to the parking slot, 
parallel/perpendicular parking manoeuvre relative to the parking slot longitudinal axis, etc.). Table 
2.7 gives an overview of the studies included in the analysis. 

Table 2.7: Overview of parking studies. 

 Study1 Study2 Study3 Study4 Study5 
N Driver 65 3 21 20 

Driver type Non-professional Professional 19% professional 5% professional 

Age 41 (sd = 10.8) 29 (sd = 3.6) 47 (sd = 15.9) 39 (sd = 11) 

% Female 23% 0% 0% 30% 

N Manoeuvre Total 692 51 21 1309 1750 

2.5.6 Additional Data Evaluation using AIM Mobile Traffic Acquisition 

The project L3Pilot aims to further develop, mature and assess current ADF regarding traffic safety 
and efficiency. This includes ADF behaving more like human drivers but without their erroneous 
behaviours that cause so many deaths and severe injuries worldwide. One aspect is to measure 
how SAE L3 vehicles behave and how they interact with other manually driven or vulnerable road 
users. Another is to measure and quantify the normal behaviour of human drivers, which can be 
seen as a baseline for how ADF should work. Here, the AIM (Application Platform for Intelligent 
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Mobility) methodology is briefly described, as applied to a roundabout and a signalised 
intersection. 

The AIM Mobile Traffic Acquisition system is part of the AIM test field in Braunschweig, Germany. 
It consists mainly of one or two combinable mobile stereo camera poles (see Figure 2.9, left), 
which can be used for the detection, classification, and tracking of road users and generates road 
user trajectories and augmented video data that form the basis of road user behaviour analysis. 
The trajectories and video data provide road user ID, time stamp, position, speed, acceleration, 
heading, and object size for each road user at 25 frames per second. 

The trajectories and converted video images provided by the cameras are stored in a local 
database, in line with GDPR regulations, for offline behaviour analysis and validation. The data 
from the stereo cameras are anonymised online by converting the high-resolution images to low 
resolution and augmenting the scene with 3D-bounding boxes. Three camera poles of the AIM 
mobile units were installed at a roundabout as shown in Figure 2.9 (right). 

  

Figure 2.9: AIM Mobile Traffic Acquisition mobile measurement unit (left); selected roundabout and 
schematic diagram of three installed AIM mobile units with their fields of view (right). 

2.5.6.1 Obtaining road user behaviour 

Understanding the behaviour of road users with regard to their own driving profile in terms of traffic 
efficiency, as well as in any safety-related interactions with other road users, is of key interest 
when speaking about maturing automated driving functions (ADF). On the one hand, ADF should 
“behave” as manual drivers, but on the other they should be more efficient and much safer than 
manual drivers. Therefore, measuring current road user behaviour considers two goals: (i) 
measure and understand how ADF behave regarding their own driving behaviour, and how ADF 
behave in case of interactions with manual road users, so as to yield quantified statements on the 
matureness of ADF; and (ii) measure and understand what the nominal driving behaviour of 
“manual” road users is and how they interact with other “manual” road users, so as to yield 
quantified statements on how ADF should behave. 
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Based on the numerical road user trajectories provided by the AIM Mobile Traffic Acquisition units, 
different variables of road user behaviour can be obtained. The variables considered were those 
that describe driving behaviour, road user kinematics (speed, acceleration), manoeuvre precision, 
and journey times. Other variables considered were those that describe road users interacting with 
other road users in car-following, crossing or merging scenarios in terms of post encroachment 
time (PET), predicted post encroachment time (pPET), alternatively called time advantage (TAdv), 
time to collision (TTC), time headway (THW), minimum distance between two interacting road 
users, and number of encounters and number of critical encounters (near-crashes).  

Altogether, four weeks’ worth of augmented video data (for verification purposes) and trajectory 
data (for analysis) of all road users were recorded at the roundabout. Since the roundabout is a 
special traffic infrastructure with properties that differ somewhat from intersections, it made sense 
not only to consider driving scenarios such as free/undisturbed driving, merging or crossing, and 
car-following situations, but also to look at the different phases of the roundabout, which are 
entering, circling and exiting. Relevant and feasible RQs could thus be asked on this basis. The 
whole dataset was reduced to the relevant situations, i.e., the trajectories between 7 am and 7 pm. 
The ADF vehicle was driven only between 3 pm and 7 pm. The trajectories were separated into 
several subsets to distinguish between the relevant phases defined above, then filtered to detect 
outliers (e.g., due to acceleration and position noise), ID changes, and trajectory losses. For 
instance, the Unscented Kalman Filter (UKF) was applied to reduce the lateral position noise of the 
ADF and baseline trajectories.  

The remaining trajectory data was analysed by applying the metrics to answer the relevant RQs. 
Additionally, thresholds were set to further reduce the amount of data. The baseline of the 
manually driven vehicles was selected randomly, while maintaining similar and comparable 
conditions to the drives with ADF; i.e., the baseline situations should have the same paths and 
overlap the ADF drives by ±30. All ADF situations and baseline situations were verified manually 
by considering the video scenes. Where statements were based on the whole remaining dataset, 
some baseline situations were verified randomly. For comparison of ADF and baseline driving and 
interaction behaviour, the relevant data was analysed by applying inference statistical methods, 
including e.g., Bonferroni correction of the level of significance. 

2.5.6.2 Specific Methods for Data Analysis Relevant for Answering RQs 

Manoeuvre Precision 

From an external, subjective point of view, the intention of vehicles with ADF besides entering, 
circling, and exiting the roundabout is not clear. Therefore, in this RQ, manoeuvre precision was 
measured by variably intersecting certain points on the roundabout. Four virtual loops were placed 
where they would be crossed by all baseline and ADF vehicles at certain spots on the roundabout. 
The intersection points were mapped on histograms showing the distance di of each vehicle i to the 
mean distance m(d) of each loop.  
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Lane Keeping Performance 

Lane keeping is considered as variability of each trajectory of interest from a prototypal trajectory 
R., which can be defined as the middle of the lane (georeferenced by the given lane-mark 
information) or the most representative path adopted by the average of all road users, etc. Here, 
the most representative path R was computed from the whole dataset of manually driven vehicles. 
The directional variability, which is the standard deviation of the lateral distance sd(ld), between R 
and any other trajectory Ti, i = 1...N, at each single trajectory point, thus reflects lane keeping. The 
directed Hausdorff distance dH(R,Ti) is a well-suited measure for this purpose when given two sets 
of points of R and Ti with the norm ||.||: 

Equation 2.7: Directed Hausdorff distance. 

𝑑𝑑𝐻𝐻(𝑅𝑅,𝑇𝑇𝑎𝑎) = 𝑚𝑚𝑎𝑎𝑚𝑚
𝑥𝑥 \𝑎𝑎𝑖𝑖 𝑅𝑅

{ 𝑚𝑚𝑤𝑤𝑛𝑛
𝑦𝑦 \𝑎𝑎𝑖𝑖 𝑇𝑇𝑖𝑖

{|| 𝑚𝑚,𝑦𝑦 ||} }  

The resulting undirected Hausdorff distance DH(R,Ti) is given by a resulting N-x-N matrix: 

Equation 2.8: Undirected Hausdorff distance. 

𝐷𝐷𝐻𝐻(𝑅𝑅,𝑇𝑇𝑎𝑎)  =  𝑚𝑚𝑎𝑎𝑚𝑚{𝑑𝑑𝐻𝐻(𝑅𝑅,𝑇𝑇𝑎𝑎),𝑑𝑑𝐻𝐻(𝑇𝑇𝑎𝑎,𝑅𝑅)}, 

for which its smallest sum of distances to any other trajectory reflects R for comparing ADF 
vehicles with the baseline: 

Equation 2.9: Most representative path R. 

𝑅𝑅 =  𝑚𝑚𝑤𝑤𝑛𝑛 {𝑒𝑒𝑠𝑠𝑚𝑚𝑎𝑎=1..𝑁𝑁 𝐷𝐷𝐻𝐻𝑎𝑎(𝑅𝑅1,𝑇𝑇𝑎𝑎), . . . , 𝑒𝑒𝑠𝑠𝑚𝑚𝑎𝑎=1..𝑁𝑁 𝐷𝐷𝐻𝐻(𝑅𝑅𝑁𝑁,𝑇𝑇𝑎𝑎)}. 

The lateral distance ld between the corresponding data points of any Ti and R is the relevant 
parameter with which to analyse the lane keeping performance of both the ADF vehicle and the 
baseline, which can be derived by computing the scalar projection of the distance vector Δd to the 
orthonormal vector n to the heading of R, where θ is the angle between n and Δd: 

Equation 2.10: Lateral distance between corresponding data points. 

𝐵𝐵𝑑𝑑 =  ||𝛥𝛥𝑑𝑑||  ·  𝑐𝑐𝑐𝑐𝑒𝑒 𝜃𝜃. 

Traffic Flow / Journey times 

Due to the fact that exactly one ADF vehicle was driving in the roundabout at the same time, its 
impact on traffic flow is close to zero in a view of macroscopic traffic parameters. Instead, the ADF 
vehicle is–due to safety requirements–expected to have a higher journey time JT (time needed to 
get from A to B given the road infrastructure) driving through the roundabout than manually driven 
vehicles. Therefore, the journey times of the manually driven vehicles and the vehicles with ADF 
were measured from a defined entering position in the North of the roundabout to a defined exiting 
position in the East of the roundabout. Additionally, the expected difference between the journey 
times of the ADF vehicles and the baseline vehicles can be considered as loss time, which 
quantifies the “loss” of the current maturing level of the ADF in comparison to the baseline. The 
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journey time JT between entering the roundabout in the North and exiting it in the East was 
calculated on the basis of sum of the journey times of three sections “entering”, “circling” and 
“exiting”: 

Equation 2.11 Journey time. 

JT = JT(entering) + JT(circling) + JT(exiting). 

Interaction Scenarios in the Roundabout 

Due to the lack of interaction between the ADF vehicle with other road users on the roundabout, 
the researchers focused on a detailed analysis of human drivers interacting with other road users. 
For the scenarios car-following, VRU crossing and merging, car-following scenarios were divided 
into the phases “entering”, “circling” and “exiting”. The thresholds of THW were set to six seconds 
each and all situations above this value were ignored. VRU crossing scenarios were considered by 
the sub-scenarios “yielding” and “non-yielding”. The PET threshold was set to five seconds and all 
interaction situations above this limit were ignored.  

Merging scenarios on the roundabout did not take place at an ideal 90° degree angle but at much 
lower angles, evolving towards car-following. According to the yielding behaviour of the ego-vehicle 
(i.e., the entering vehicle), the merging scenarios were divided into “yielding” and “non-yielding”. 
The PET threshold was set to six seconds to consider all interacting road users entering and 
circling below this threshold. 

2.6 Method for User and Acceptance Evaluation 
In order to carry out the User and Acceptance Evaluation for the three different ADF considered for 
the evaluation in L3Pilot (see section 1.4), three Pilot site questionnaires were designed, one for 
each environment, with function-specific questions for ADF operating in each environment. This 
method allowed us to collect responses that are context and ADF specific. 

The questionnaire was in two parts (included as Annex in D3.4 – Evaluation Plan (Innamaa et al. 
2020), the first of which was administered before the Pilot drives commenced. The first part 
included questions related to socio-demographic factors (age, gender, country of residence, 
education level, employment status, income, and family size), vehicle use and purchasing 
decisions, driving history, in-vehicle system usage, activities while driving, trip choices, and mobility 
patterns. The data was then used to create different user groups for the evaluation, and to 
understand the impact of various socio-demographic factors on participants’ acceptance and 
perception of the ADFs. 

The second part of the questionnaire was administered immediately after the Pilot drive concluded, 
or the final Pilot drive if a participant participated in more than one drive. It examined participants’ 
initial reactions to a given ADF, including acceptance, safety and comfort. To examine whether 
participants felt they would change any of their behaviours should they have access to that ADF in 
their daily life, they were re-asked questions about vehicle use and purchasing decisions, driving 
history, in-vehicle system usage, engagement with non-driving tasks, trip choices, and mobility 
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patterns. The questions in this section were phrased to address the specific ADF under 
investigation, the only exception being motorway and traffic jam ADF, which utilise the same 
questions, because they have similar ODD. 

As an optional additional section, where feasible, users’ controllability and performance during and 
after a take-over was evaluated mid-drive, following any need to resume manual control from the 
ADF. For this analysis, drivers were asked immediately after a take-over scenario to rate the 
criticality of the preceding situation as a whole on a ten-point scale, ranging from harmless (1) to 
uncontrollable (10). The scale is based on that by Neukum et al. (2008) and allows a direct 
comparison of drivers’ own evaluation of the take-over and the post-drive evaluation by expert 
raters. This data was collected for ordinary drivers and at Pilot sites where the safety protocol 
permitted mid-drive evaluations. 

2.6.1 Questionnaire Methodology 

In total, data from 354 unique drivers was collected for the Motorway Pilot Site Questionnaire from 
the CDB. The data was further tabulated into three groups. Table 2.8 lists the demographic details 
of the participants in the three driver and test type groups: professional drivers from the Pilot sites, 
ordinary drivers from the Pilot sites (some including Wizard-of-Oz studies conducted on test 
tracks), and ordinary drivers from simulator studies. In total, data from 175 participants was 
collected for the Urban Pilot Site Questionnaire from the CDB. The data consisted of 15 
professional drivers and 160 passengers; the data was analysed without separating it into different 
groups. Table 2.8 shows the demographic information of the participants of the Urban Pilot Site 
Questionnaire. 

Table 2.8: Demographic details of participants in the motorway and urban Pilot site questionnaires. 

  Professional 
Drivers from 
Motorway Real 
Pilot Site (N = 
58) 

Non-Professional 
Drivers from 
Motorway Real 
Pilot Site (N = 
236) 

Non-Professional 
Drivers from 
Motorway 
Simulator Studies 
(N = 60) 

Urban Pilot Site 
Questionnaire 
(N = 175) 

Gender • 47 Male (81%) 
• 9 Female 
• 1 Other 
• 1 Prefer not to 

say 

• 171 Male (72%) 
• 48 Female 
• 1 Other 
• 16 missing data 

• 31 Male (52%) 
• 29 Female 

• 115 Male (78%) 
• 60 Female (22%) 

Age • Range: 23-57 
years 

• M = 40.11 
• SD = 11.26 

• 22-70 years 
• M = 40.72 
• SD = 11.28 
• 16 missing data 

• 22-62 years 
• M = 39.25 
• SD = 11.88 

• 20-68 years 
• M = 39.47 
• SD = 11.29 
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  Professional 
Drivers from 
Motorway Real 
Pilot Site (N = 
58) 

Non-Professional 
Drivers from 
Motorway Real 
Pilot Site (N = 
236) 

Non-Professional 
Drivers from 
Motorway 
Simulator Studies 
(N = 60) 

Urban Pilot Site 
Questionnaire 
(N = 175) 

Driving 
Experience 
(years) 

• < 1 year (0%) 
• 1-2 years (0%) 
• 2-10 years (28%) 
• > 10 years (72%) 

• < 1 year (0%) 
• 1-2 years (0%) 
• 2-10 years (18%) 
• >10 years (82%) 

• < 1 year (0%) 
• 1-2 years (2%) 
• 2-10 years (23%) 
• >10 years (75%) 

• < 1 year (1%) 
• 1-2 years (1%) 
• 2-10 years (25%) 
• > 10 years (74%) 

Driving 
Experience 
(distance 
in km) 

• < 2000 (3%) 
• 2000-5000 (3%) 
• 5000-10000 

(22%) 
• 10000-15000 

(12%) 
• 15000-20000 

(14%) 
• 20000-50000 

(34%) 
• > 50000 (10%) 

• < 2000 (4%) 
• 2000-5000 (8%) 
• 5000-10000 (14%) 
• 10000-15000 

(20%) 
• 15000-20000 

(30%) 
• 20000-50000 

(21%) 
• > 50000 (2%) 

• < 2000 (8%) 
• 2000-5000 (18%) 
• 5000-10000 (18%) 
• 10000-15000 

(17%) 
• 15000-20000 

(17%) 
• 20000-50000 

(18%) 
• > 50000 (3%) 

• < 2000 (6%) 
• 2000-5000 (16%) 
• 5000-10000 (18%) 
• 10000-15000 

(17%) 
• 15000-20000 

(21%) 
• 20000-50000 

(21%) 
• > 50000 (2%) 

For parking, questionnaire data was collected in three studies conducted at three different test 
sites. Since the studies on parking ADF differed substantially between test sites, e.g., with regard 
to tested manoeuvres, test environment and experimental approach, the subjective data for the 
evaluation of parking ADFs is not merged on the level of single questionnaires but on the level of 
studies. All studies are analysed separately, then the results from the different studies are merged 
in such a way that each study contributed one data point to the overall results. Table 2.7 is a 
summary of the database for the parking ADF. 

As shown in the previous section, there were five RQs related to User’s Acceptance and 
Awareness. To answer each of these RQs, questions were administered using a six-point scale, 
unless otherwise stated, whereby 1 = Strongly disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = 
Strongly agree and 6 = Don’t know. 

To answer the L3Pilot User and Acceptance RQs, each relevant questionnaire item is explored 
according to the driver/test type. To provide an overview of the spread of participants’ responses, 
the percentages of each response are presented in figures. In addition, findings are described to 
answer each RQ under each figure. Finally, Hierarchical Regression was conducted to investigate 
how user experience, driver type, and system familiarity affect willingness to use the respective 
systems. All the results are included in Section 4.3. 

2.6.2 Video Analysis 

While the main methodology for the User and Acceptance research area was the developed 
questionnaire, some behavioural aspects can be studied in-depth by analysing videos of the 
drivers during exposure. For this purpose, several cameras were installed in the cabin to observe 
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the driver interacting with the automated driving function. Especially the transition phases are of 
particular interest, since the behavioural process of handing over control to the vehicle and taking it 
back has implications not only for safety but also HMI design. For several RQs, e.g., “How do 
drivers respond when they are required to retake control?”, video data can provide an insight into 
the actual response process. For this purpose, observable measures that are objectively 
identifiable need to be determined and collected in a code book which is used for annotations. The 
behavioural features are then labelled frame by frame by annotators.  

To evaluate the controllability and safety of take-over situations within L3Pilot, a video-based 
procedure was used on data from two Pilot sites. In this method, expert raters judged the criticality 
of the preceding take-over situation as a whole on a ten-point scale ranging from harmless (1) to 
uncontrollable (10). This method, called the take-over-controllability-rating (TOC-rating, Naujoks et 
al., 2018, www.toc-rating.de/en), provides a uniform and easy to understand approach to 
evaluating take-over situations. The TOC-rating was developed to provide a more holistic 
assessment of take-over situations that goes beyond vehicle parameters, such as the deviation of 
speed or lateral control, but also considers traffic violations (such as missing safety-related glances 
or absent indicator use) as well as the observed emotions of the driver. One advantage of the 
TOC-rating that makes it especially suitable for the needs of L3Pilot is that an objective (i.e., 
standardised and common) rating can be applied across situations and drivers. 

For the in-depth analysis of video data, a code book was prepared that contains all relevant 
features that relate to the RQs of interest. Due to various technical and privacy limitations, video 
data could not be collected at the main Pilot sites. Therefore, the video data was collected in a 
Wizard-of-Oz study on public roads with 30 ordinary drivers. Thus, the automation is simulated by 
a wizard driver while the participant is under the impression that the vehicle is driving automated. 
The main focus was on the transition phases between human driver and system (hand-over) and 
the other way around (take-over), 30 seconds before and after the transitions were annotated. For 
comparison purposes, data from a manual baseline drive was also collected on the same route as 
the Wizard-of-Oz study. 

 

http://www.toc-rating.de/en
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3 Results of the Technical and Traffic Evaluation 

Following the description of applied methods and the data processing, this chapter presents the 
results of the Technical and Traffic evaluations performed within L3Pilot. The results from the 
evaluation for the motorway, urban and parking ADF are presented. The most common way to 
present the results is visualisation by means of a histogram per PI and driving scenario. To answer 
the RQs, the histograms give the results of the statistical tests, the relative change, and the effect 
size. 

In general, when interpreting the presented results, it should be noted, that the evaluated data 
does not represent a single system. While all the systems were set up to facilitate the use cases of 
motorway driving, urban driving, and parking and therefore share broad similarities, individual 
parameterisation per system - and thus the resulting behaviour - may differ. The strict requirement 
for avoidance of benchmarking between the systems does not allow dedicated analysis of an 
individual system. Effects found in the merged data for one ADF category may not be present in 
some of the systems evaluated. Furthermore, it needs to be emphasised that the piloted systems 
are at a pre-series stage. Operating them at this stage may require a safer parameterisation than 
for the operation of a series production AV. Additionally, operation of the systems may be 
constrained by special legal requirements which may influence the parameterisation of the 
systems. 

3.1 Motorway 
In the following, the RQs for the motorway use-case presented within Section 2.3.1 are answered 
using the data from the Pilot sites. For all RQs presented in this chapter, the focus is on the 
behaviour of the vehicle fitted with an ADF. It is not analysed how overall traffic changes through 
introducing an ADF (analysed in Bjorvatn et al., Deliverable D7.4 – Impact Evaluation Results 
2021). Due to the prototype nature of the tested ADFs and impact of the required testing conditions 
(e.g., presence of a safety driver), RQs in the field of technical and traffic analysis sometimes 
cannot be fully answered. This is especially the case when it comes to the evaluation of ADF in 
rare events or boundary conditions.  

The RQs are in order of their respective number. Unless otherwise stated, the graphs show the 
distribution of the analysed indicators, always comparing baseline driving with driving with the ADF 
active. 

3.1.1 RQ-T1 - RQ-T3: Behaviour of the ADF 

The technical research questions RQ-T1 to RQ-T3 aim at evaluating the functionality of the ADF, 
i.e., whether the tested ADFs work as intended. Since the tested ADF sometimes relied especially 
in boundary conditions on the safety driver, aspects like the expected frequency of take-over 
requests or the duration of sections with ADF being available might differ from what can be 
expected from a market ready ADF. However, a descriptive analysis is provided that gives 
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information on the availability of the tested ADFs, on the frequency of take-over requests, and on 
the time the ADF could be used in real traffic. 

In total, there are 2805 trips for which the proportion of time the ADF was available and the 
average duration of section with ADF active can be calculated. In Figure 3.1, in parts of a trip 
marked as being on the motorway and not baseline, the ADF was on average available 87% of the 
time (standard deviation sd=19.4%, median = 96%). The average duration of trip sections with 
ADF active was about 3.9 minutes (sd=3.2 minutes). The maximum duration of a section where the 
ADF was continuously active was 77 minutes. In the interpretation of these figures, it should be 
kept in mind that some of the tested ADFs did not support automated lane changes. This means 
that every lane change initiated by the driver of such an ADF ended the continuously active 
section. 

 

Figure 3.1: Distribution of the duration of a section where the ADF was available (left) and active 
(right). 

The frequency of take-over requests is another indicator that needs to be interpreted carefully. In 
Figure 3.2, there is a large proportion of trips (54%) during which no take-over requests were 
reported. One reason for this might be the safety drivers who were instructed to take control back 
before anything unusual could happen. During 65% of trips there was less than one take-over per 
hour. For the cumulative distribution shown in Figure 3.2, the trips have been weighed based on 
their duration. The weighted average frequency of take-over requests per hour is 5.1 (sd = 19.0), 
which corresponds to one take-over request every 12 minutes. 
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Figure 3.2: Cumulative distribution of frequency of take-over requests (TOR) per hour calculated 
for trip sections where ADF was available. 

3.1.2 RQ-T6: What Is the Impact of ADF on Vehicle Dynamics in Defined Driving Situations? 

To evaluate the impact on vehicle dynamics, longitudinal (ax) (Figure 3.3) and lateral accelerations 
(ay) (Figure 3.4) were analysed. The following parameters were derived: minimum longitudinal 
acceleration (that is maximum deceleration), min(ax), maximum longitudinal acceleration 
(max(ax)), standard deviation of longitudinal acceleration (sd(ax)), maximum absolute lateral 
acceleration (max(abs(ay)), and standard deviation of lateral acceleration (sd(ay)). For indicators 
describing the effects of longitudinal dynamics, the results show reduced maximum accelerations 
when driving with the ADF for most driving scenarios except car following. 

For the maximum deceleration (min(ax)) the results are more varied: during car following, 
approaching a lead vehicle, cut-ins, and lane changes, the ADF decelerates more strongly than a 
driver does in manual driving. However, during uninfluenced driving, approaching a traffic jam and 
driving in a traffic jam, the deceleration is reduced. Consequently, also the results in the variation 
of longitudinal acceleration are mixed across driving scenarios. The results of statistical tests are 
presented in Table 3.1 in terms of Z-score, p-Value, relative change, and effect size. 
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Figure 3.3: Distribution of indicators of longitudinal acceleration for the scenarios approaching a 
lead vehicle, following a lead vehicle, and uninfluenced driving. Min(ax) in top row, max(ax) in 
middle, and sd(ax) at bottom. 
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Maximum absolute lateral acceleration is reduced with ADF during most scenarios except lane 
changes. 

 

 

Figure 3.4: Distribution of indicators of lateral acceleration for the scenarios following a lead 
vehicle, lane change, and uninfluenced driving. Max(abs(ay)) in top row, and sd(ay) at bottom. 
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Figure 3.5: Relation between change of minimum and maximum longitudinal acceleration for the 
different driving scenarios. 

Table 3.1: Detailed results for indicators of vehicle dynamics. 

Indicator Scenario Z p Change Effect size 
min(ax) Uninfluenced driving -52.4 0.000 9% -0.09 

Following 41.8 0.000 -23% 0.22 

Approaching a lead vehicle 30.9 0.000 -31% 0.30 

Cut-In 11.2 0.000 -32% 0.29 

Lane change 15.3 0.000 -20% 0.16 

Approaching a traffic jam -3.6 0.000 27% -0.35 

Driving in traffic jam -3.9 0.000 12% -0.21 

max(ax) Uninfluenced driving 97.8 0.000 -25% 0.21 

Following -25.9 0.000 16% -0.15 

Approaching a lead vehicle 22.7 0.000 -18% 0.14 

Cut-In 4.4 0.000 -9% 0.08 

Lane change 52.5 0.000 -42% 0.37 

Approaching a traffic jam 1.7 0.085 -16% 0.16 

Driving in traffic jam 12.4 0.000 -31% 0.73 

sd(ax) Uninfluenced driving 112.3 0.000 -17% 0.21 

Following -26.8 0.000 14% -0.18 
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Indicator Scenario Z p Change Effect size 
Approaching a lead vehicle -13.3 0.000 15% -0.18 

Cut-In -9.2 0.000 23% -0.25 

Lane change 25.6 0.000 -4% 0.04 

Approaching a traffic jam 3.8 0.000 -26% 0.34 

Driving in traffic jam 0.7 0.482 -6% 0.12 

max(abs(ay)) Uninfluenced driving 57.0 0.000 -10% 0.14 

Following 1.1 0.278 0% 0.00 

Approaching a lead vehicle 24.3 0.000 -12% 0.21 

Cut-In 17.1 0.000 -23% 0.39 

Lane change -17.9 0.000 11% -0.18 

Approaching a traffic jam 1.8 0.068 -16% 0.17 

Driving in traffic jam 8.0 0.000 -40% 0.39 

sd(ay) Uninfluenced driving 56.0 0.000 -11% 0.15 

Following -21.4 0.000 9% -0.12 

Approaching a lead vehicle 18.0 0.000 -11% 0.17 

Cut-In 16.8 0.000 -28% 0.44 

Lane change -31.3 0.000 20% -0.29 

Approaching a traffic jam 0.0 0.980 -9% 0.07 

Driving in traffic jam 9.2 0.000 -53% 0.34 
 

3.1.3 RQ-T7: What Is the Impact of ADF on the Accuracy of Driving? 

To analyse the accuracy of lane keeping, the mean deviation from the lane centre (m(lat pos)) and 
the variation of lane position (sd(lat pos) are investigated. Across scenarios, vehicles with ADF 
active drive closer to the centre of the lane and vary less in lateral position. In other words, with 
ADF lane keeping is more stable. 
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Figure 3.6: Distribution of indicators of lane keeping performance for the scenarios approaching a 
lead vehicle, following a lead vehicle and uninfluenced driving. Mean(position in lane) in top row, 
sd(position in lane) at bottom. 

As indicators for longitudinal regulation, the variation of speed (sd(v)) is analysed. During stable 
lane-bound scenarios, during low-speed scenarios and during lane changes the variation of speed 
is reduced with ADF. During the more dynamic scenarios Cut-in and Approaching a lead vehicle, 
speed varies more while driving with ADF active. 

To get a better overview on how longitudinal regulation changes with ADF, effects for variation of 
speed and variation of longitudinal acceleration are brought together. For the more dynamic 
scenarios Cut-in and Approaching a lead vehicle, regulation is less smooth with ADF because 
speed, as well as longitudinal acceleration, vary more than in manual driving. During low-speed 
scenarios and uninfluenced driving, longitudinal regulation is smoother with ADF as both variations 
of speed and of acceleration are reduced. During Following, the ADF manages to reduce the 
variation of speed. However, this is related to an increase in variation of longitudinal acceleration. 
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Figure 3.7: Relation between change of variation of speed and change of variation of longitudinal 
acceleration for the different driving scenarios. 

Table 3.2: Detailed results for indicators for precision of driving. 

Indicator Scenario Z p Change Effect size 
sd(lat pos) Uninfluenced driving 239.9 0.000 -47% 0.71 

Following 222.1 0.000 -54% 0.94 

Approaching a lead vehicle 81.9 0.000 -46% 0.60 

Cut-In 29.4 0.000 -43% 0.68 

Approaching a traffic jam 8.6 0.000 -34% 0.46 

Driving in traffic jam 10.8 0.000 -29% 0.32 

mean(lat pos) Uninfluenced driving 285.7 0.000 -57% 0.94 

Following 255.8 0.000 -62% 1.28 

Approaching a lead vehicle 98.1 0.000 -55% 0.76 

Cut-In 42.9 0.000 -59% 1.16 

Approaching a traffic jam 10.1 0.000 -54% 1.19 

Driving in traffic jam 4.6 0.000 -9% 0.10 

sd(v) Uninfluenced driving 179.0 0.000 -31% 0.25 

Following 103.3 0.000 -29% 0.33 

Approaching a lead vehicle -11.9 0.000 27% -0.21 

Cut-In -14.6 0.000 49% -0.36 
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Indicator Scenario Z p Change Effect size 
Lane change 43.7 0.000 -20% 0.17 

Approaching a traffic jam 6.4 0.000 -38% 0.70 

Driving in traffic jam 9.6 0.000 -21% 0.50 
 

3.1.4 RQ-T8: What Is the Impact of ADF on the Driven Speed? 

Initial explorative analyses showed that, as expected, there was a strong influence of the speed 
limit on the average speed as well as on the maximum speed. Ignoring this would incorporate a lot 
of noise in the data. On the other hand, explicitly including speed limit as a factor in the analysis 
was not a straightforward way to go either. First of all, in more than 40% of the observations, the 
speed limit was hidden (because it would have made it possible to link entries in the database with 
a single Pilot site.) or it was unlimited (as can happen on German motorways). Second, separating 
the analysis by speed limit would introduce the risk of revealing the origin of certain parts of the 
data, for instance because some limits only occur on certain test sites. 

To use as much of the data as possible, and at the same time stay close to the analysis method 
used for the other PIs, the following approach was used. First, the data was separated by speed 
limit. For each speed limit, the distribution of the PI was derived, for Baseline (BL) as well as for 
ADF. Also, the median of the combined distribution (pooled over BL and ADF) was determined. 
This is illustrated in Figure 3.8. 

 

Figure 3.8: Distribution of average speeds as a function of speed limit and experimental condition 
(artificial data). 
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Next, all distributions were shifted, such that for each speed limit the median was 0. This is 
illustrated in Figure 3.9: the shape of the entire distribution remains unchanged, as well as any 
difference that might exist between BL and ADF. 

 

Figure 3.9: Distribution of average speeds as a function of speed limit and experimental condition 
(artificial data). 

As the final pre-processing step, the data were pooled over all speed limits, ending up with two 
distributions: one for BL and one for ADF (see Figure 3.10). After this, the same non-parametric 
test could be applied as for the other PIs. In that process, the Cohen effect size could be calculated 
as well. Only the effect size in % could not be calculated, because the original absolute values of 
the speeds were lost in the alignments of the medians. 

 

Figure 3.10: Distribution of average speeds as a function experimental condition, after aligning the 
medians and then pooling over all speed limits (artificial data). 
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For all analysed scenarios, there was a significant reduction of maximum speed while driving with 
the ADF, and for all except driving in traffic jam also a reduction of average speed. 

Table 3.3: Detailed results for indicators of vehicle speed. 

Indicator Scenario Z p Change Effect size 
mean(v) Uninfluenced driving 55.4 0.000 N.A. -0.12 

Following 51.9 0.000 N.A. -0.13 

Approaching a lead vehicle 29.0 0.000 N.A. -0.26 

Cut-In 12.0 0.000 N.A. -0.24 

Approaching a traffic jam 3.1 0.002 N.A. -0.25 

Driving in traffic jam 1.9 0.058 N.A. -0.06 

max(v) Uninfluenced driving 62.2 0.000 N.A. -0.14 

Following 55.9 0.000 N.A. -0.15 

Approaching a lead vehicle 27.8 0.000 N.A. -0.25 

Cut-In 10.1 0.000 N.A. -0.20 

Approaching a traffic jam 4.2 0.000 N.A. -0.33 

Driving in traffic jam 8.6 0.000 N.A. -0.41 
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Figure 3.11: Distribution of average speed and maximum speed (normalised) in the scenarios 
Following and Uninfluenced driving. Mean(speed) in top row, and max(speed) at bottom. 

3.1.5 RQ-T9: What Are the Impacts of ADF on Energy Efficiency? 

The impact on energy efficiency is not based on measured fuel consumption but on calculated 
energy demand (cf. Section 2.5.1). As can be seen in the graphs (Figure 3.12), there is a bimodal 
distribution if this indicator is analysed for all trips and for trips without traffic jams. For trips 
consisting of traffic jams more than 50% of the driving time, only the lower peak remains. This 
indicates that the peaks mainly relate to vehicle speed, one showing the distribution for higher 
speeds and one for lower speeds, e.g., traffic jams and sections on urban motorways with lower 
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speed limits (e.g. 70 kph). Independent of the included trips, there is a significant decrease of 
calculated energy demand when driving with the ADF active due to changes in driving style. 

 

Figure 3.12: Distribution of calculated energy demand in kWh during all trips, trips without traffic 
jam and trips with mainly traffic jams (>50% of driving time on motorways). 
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Table 3.4: Detailed results for indicators of energy demand. 

Indicator Scenario Z p Change in % Effect size 
mean(Energy demand) All trips 17.4 0.000 -20% 0.68 

Trips without traffic jams -15.6 0.000 -19% 0.66 

Trips with mainly traffic jams 7.6 0.000 -12% 0.89 

 

3.1.6 RQ-T10 / RQ-T14: What Is the Impact of ADF on the Frequency of Near-Crashes / 
Incidents? 

To assess the impact of driving with ADF on the frequency of potentially critical driving situations, 
the proportion of driving scenarios with defined incident types is evaluated. As can be seen in 
Figure 3.13, there is a reduction of very short distances to the lead vehicle with the ADF in all 
analysed scenario types. Lateral distance incidents to the side occur less frequently and their 
frequency does not change while driving with the ADF. Dynamic incidents, i.e., harsh braking, 
happened only rarely. For dynamic incidents, a decrease of incidents during following scenarios 
and an increase during lane changes with ADF can be observed. 
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Figure 3.13: Frequency of analysed incident types in different driving scenarios in driving with ADF 
active and in baseline driving. 

Table 3.5: Detailed results on incident frequency. 

Scenario Condition Distance 
incident 

Dynamic 
incident 

 Sum 

No Front Side No Yes  

Cut-in  ADF active 4053 157 17 4223 4 4227 

What is here? % 95.88% 3.71% 0.40% 99.91% 0.09% 

Baseline 2235 149 7 2388 3 2391 
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Scenario Condition Distance 
incident 

Dynamic 
incident 

 Sum 

No Front Side No Yes  
 

What is here? % 93.48% 6.23% 0.29% 99.87% 0.13% 

Sum 6288 306 24 6611 7 6618 

Approaching ADF active 
 

16106 66 12 16170 14 16184 

What is here? % 99.52% 0.41% 0.07% 99.91% 0.09% 

Baseline 
 

17514 334 11 17840 19 17859 

What is here? % 98.07% 1.87% 0.06% 99.89% 0.11% 

Sum 33620 400 23 34010 33 34043 

Lane change ADF active 
 

25087 30 24 25099 42 25141 

What is here? % 99.79% 0.12% 0.10% 99.83% 0.17% 

Baseline 
 

26166 555 11 26723 9 26732 

What is here? % 97.88% 2.08% 0.04% 99.97% 0.03% 

Sum 51253 585 35 51822 51 51873 

Following ADF active 
 

57492 509 203 58196 8 58204 

What is here? % 98.78% 0.87% 0.35% 99.99% 0.01% 

Baseline 
 

28218 1053 90 29346 15 29361 

What is here? % 96.11% 3.59% 0.31% 99.95% 0.05% 

Sum 85710 1562 293 87542 23 87565 

Table 3.6: Results of Chi-square tests on incident frequency. 

 Pearson’s Chi-Square 
Distance incident Dynamic incident 

Cut-in 22.3688, FG=2, p=.000014 137475, FG=1, n.s. 

Approaching 156.535, FG=2, p=0.00000 .346614, FG=1, n.s. 

Lane-change 450.324, FG=2, p=0.00000 23.4703, FG=1, p=0.000001 

Following 819.857, FG=2, p=0.00000 10.3643, FG=1, p=0.001285 
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3.1.7 RQ-T11: What Is the Impact of ADF on the Frequency of Certain Events? 

To analyse the frequency with which certain driving scenarios occur, the frequency of scenarios 
per hour and the overall proportion of driving time spent in the driving scenarios are analysed. With 
both indicators, there is a significant reduction of the frequency of approaching scenarios and of 
lane changes with ADF. At the same time, the frequency of car following increases. For 
uninfluenced driving scenarios, there is a decrease of the scenario frequency while the proportion 
of time spent in that scenario increases. Other than expected, there is no increase in the frequency 
of cut-in scenarios. Overall, driving seems to be more lane-bound and less dynamic with ADF 
active. 

 

Figure 3.14: Change of scenario frequency while driving with ADF active. Values in Table 3.7. 

Table 3.7: Detailed results for indicators of frequency of driving scenarios. 

Indicator Scenario Z p Change in % Effect size 
Frequency Lane change 28.0 0.000 -60% 1.08 

Uninfluenced 13.8 0.000 -23% 0.48 

Following 5.0 0.000 6% -0.08 

Approaching 23.9 0.000 -52% 1.01 
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Indicator Scenario Z p Change in % Effect size 
Cut-in 3.7 0.000 -14% 0.13 

Proportion Lane change 29.0 0.000 -61% 1.19 

Uninfluenced -4.0 0.000 7% -0.11 

Following -2.8 0.004 16% -0.20 

Approaching 22.2 0.000 -53% 0.94 

Cut-in 2.1 0.039 1% -0.01 

The occurrence of cut-ins is looked at in detail for a subset of the data using video review to 
validate the correct detection and identify reasons for other vehicles to cut in. The motivation for 
cut-ins is categorised in discretionary (cut-in after overtaking) and mandatory (cut-in for entry ramp, 
exit ramp, avoiding a work zone or obstacle, end of lane). Overall, 1560 cut-ins (378 baseline, 
1182 ADF) were annotated and analysed. There is a significant difference in the cut-in categories. 
While most cut-ins in baseline are discretionary (70.6%), cut-ins during ADF are leaning towards 
the mandatory category (53.0%). Especially cut-ins from entry ramps occur much more in ADF. 

3.1.8 RQ-T12: What Is the Impact of ADF on Car Following Behaviour? 

Parameters like average chosen time headway and variation of time headway are a meaningful 
indicator of driving behaviour only for scenarios with stable following behaviour like Car following 
and Driving in a traffic jam. In those scenarios, the average time headway when following a lead 
vehicle (mean(THW)) is significantly larger with ADF. Also, the variation of time headway 
(sd(THW)) is reduced while driving with the ADF. 
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Figure 3.15: Distribution of average time headway (upper graphs) and variation of time headway 
(lower graphs) in the scenarios following and driving in a traffic jam. 

For all scenarios during which a lead vehicle was present, there is a significant increase of 
minimum time headway (min(THW)) and minimum time-to-collision (min(TTC)) when driving with 
ADF active. 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 77 

  

 

 

Figure 3.16: Distribution of minimum time headway and minimum time to collision in the scenarios 
Approaching a lead vehicle, Following and Lane change. Min(THW) in top row, and min(TTC) at 
bottom. 

Table 3.8: Detailed results for indicators for car following behaviour. 

Indicator Scenario Z p Change in % Effect size 
mean(THW) Following -127.8 0.000 20% -0.53 

Driving in traffic jam -15.3 0.000 31% -0.66 

sd(THW) Following 68.3 0.000 -16% 0.14 

Driving in traffic jam 0.4 0.725 27% -0.15 

min(THW) Following -126.2 0.000 22% -0.51 

Approaching a lead vehicle -49.0 0.000 25% -0.54 

Cut-In -6.5 0.000 8% -0.17 

Lane change -50.9 0.000 39% -0.33 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 78 

  

Indicator Scenario Z p Change in % Effect size 
Approaching a traffic jam -3.8 0.000 19% -0.40 

Driving in traffic jam -15.7 0.000 69% -0.34 

min(TTC) Following -67.6 0.000 25% -0.49 

Approaching a lead vehicle -29.3 0.000 26% -0.30 

Cut-In -7.0 0.000 25% -0.26 

Lane change -10.3 0.000 9% -0.08 

Approaching a traffic jam -4.0 0.000 45% -0.41 

Driving in traffic jam -13.5 0.000 80% -0.41 
 

3.1.9 RQ-T15: How Does the ADF Influence the Behaviour of Subsequent Vehicles? 

A data subset was analysed in depth for interactions with rear vehicles, since there was no defined 
driving scenario capturing that. The following results are based on 52 042 events with a 
subsequent vehicle (of which 12 116 are in baseline) on a city motorway. Some conditions were 
excluded, as sensor errors can lead to false data, e.g., driving through tunnels, speeds below 50 
km/h and lateral speed of subsequent vehicle above 5.5 m/s to reduce the amounts of ghost 
objects. The area of interest behind the ego-vehicle is reduced to 40 metres and the rear vehicle’s 
time headway should be higher than 0.3 s and lower than 10 s. 

The relevant indicators that were investigated are the minimum distance kept by the subsequent 
vehicle, the minimum acceleration below zero (max brake values) of the subsequent vehicle, the 
average relative velocity above zero (representing an approach of the subsequent vehicle), 
minimum THW of the subsequent vehicle. Table 3.9 shows the results. While there is a small effect 
on the distance kept (slightly more with ADF compared to baseline) and on the min acceleration of 
subsequent vehicles (slightly higher for ADF, which means less severe braking on average), there 
is no significant difference in the relative velocity or in the time headway kept by the subsequent 
vehicle. 

Table 3.9: Analysed indicators and results for RQ-T15. 

Indicator Z p Change in % Effect size 
min(distance) -14.8 0.000 4% -0.15 

min(acc) -14.7 0.000 -12% -0.18 

m(rel. velocity) -0.7 0.49 - - 

min(THW) 0.9 0.35 - - 
 

3.1.10 RQ-T16: How Does the ADF Influence the Behaviour of Preceding Vehicles? 

To evaluate the behaviour of the lead vehicle, the indicators average speed of the lead vehicle 
(mean(v lead vehicle) and standard deviation of speed of the lead vehicle (sd(v lead vehicle)) were 
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derived from the data. For all analysed scenarios, there is a significant reduction of speed of the 
lead vehicle while driving with ADF active. This is probably because the ADF drives significantly 
slower than in manual driving and thus, slower vehicles are selected as lead vehicles. To control 
that effect, the difference between the average speed of the ego-vehicle and the average speed of 
the lead vehicle was calculated (diff(v lead vehicle). There are significant but small changes of this 
difference for the scenarios Following and Approaching a lead vehicle. For cut-ins, the speed 
difference to the lead vehicle is significantly larger compared to baseline. As can be seen in Figure 
3.17, in baseline driving there is a larger proportion of vehicles cutting in with a lower speed than 
the ego-vehicle. While driving with ADF, the speeds between the two vehicles are more similar and 
in a larger proportion of scenarios the vehicle cutting in is considerably faster. Furthermore, there is 
a significant reduction of the variation of speed of the lead vehicle for all scenarios while driving 
with ADF. With ADF, the frequency of lane changes made by the lead vehicle drops by 33%. 

 

 

Figure 3.17: Distribution of variation of speed of the lead vehicle and speed difference to the lead 
vehicle in the scenarios Cut-in, Following and Lane change. Sd(v lead vehicle) in top row, diff(v 
lead vehicle) at bottom. 
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Table 3.10: Detailed results for indicators for behaviour of preceding vehicle. 

Indicator Scenario Z p Change in % Effect size 
mean(v lead vehicle) Following 92.3 0.000 -9% 0.45 

Approaching a lead vehicle 26.4 0.000 -5% 0.28 

Cut-In 8.0 0.000 -5% 0.21 

Lane change 26.1 0.000 -6% 0.26 

Approaching a traffic jam 2.0 0.046 -3% 0.16 

Driving in traffic jam 5.2 0.000 -13% 0.25 

Diff( v lead vehicle) Following 6.7 0.000 -11% 0.03 

Approaching a lead vehicle -2.3 0.021 1% -0.01 

Cut-In -26.1 0.000 103% -0.61 

Lane change 0.5 0.586 -15% 0.06 

Approaching a traffic jam -0.5 0.596 29% -0.14 

Driving in traffic jam 0.8 0.446 -33% 0.12 

sd(v lead vehicle) Following 73.3 0.000 -21% 0.21 

Approaching a lead vehicle 31.2 0.000 -23% 0.21 

Cut-In 8.9 0.000 -20% 0.23 

Lane change 35.7 0.000 -33% 0.27 

Approaching a traffic jam 2.4 0.018 -19% 0.31 

Driving in traffic jam 9.8 0.000 -23% 0.52 

N(LaneChange_LeadVeh) Trip 3.1 0.002 -33% 0.43 
 

3.1.11 RQ-T17: What Is the Impact of ADF on the Number of Near-Crashes / Incidents of 
Other Traffic Participants? 

This RQ was approached using a data subset to look in detail into potential incidents. The data 
used came from one motorway Pilot site. All recorded incidents were video reviewed. There have 
been no recorded near-crashes in either the baseline drives or the ADF drives. As the results for 
THW indicate, the ADF is not likely to cause a conflict with the preceding vehicle. However, a 
safety driver was present to prevent serious conflicts with other vehicles. There were 10 front 
incidents recorded, of which seven were dismissed. Two of the remaining were in ADF mode, one 
was an approach to a sudden traffic jam and required a safety driver intervention, and the other 
was an extremly close cut-in by another vehicle (no safety driver intervention but alert). In baseline, 
a driver merged very close to another vehicle an incident type that the ADF would not create. 
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Table 3.11: Number of analysed incidents. 

 Dismiss Baseline Treatment Total 
Front distance incident 7 1 2 10 

Rear distance incidents 29 12 13 54 

The rear incidents caused by subsequent vehicles were 54 overall but 29 were dismissed after 
review. The remaining are equally distributed between baseline and treatment. While there was 
about three times as much data collected in treatment, it could be expected that the incidents are 
reduced in the interaction with an ADF. However, the amount of data does not allow any 
quantitative statistical analysis and therefore no clear conclusion can be drawn. A more detailed 
view is provided in the safety impact assessment (Deliverable D7.4 – Impact Evaluation Results 
Bjorvatn et al., 2021). 

3.1.12 Summary, Motorway ADF 

Interpretation of the results on system availability and stability should be approached with care. It 
must be kept in mind that the tested ADFs were still on a prototype level. Furthermore, it is likely 
that the circumstances of data collection (e.g., prototype ADFs, interventions of safety drivers) 
have an impact on the results as well, so that a direct conclusion on driving with a market ready 
mature ADF is challenging. For instance, the frequency of take-over requests might be 
underestimated on trips where safety drivers prevented unusual situations by taking back control 
before the end of the ODD actually resulted in a take-over request. On some trips that were part of 
experimental test drives during which non-professional drivers had the possibility to get to know the 
ADF, the number of take-over requests might be overestimated because those trips were designed 
in such a way that take-over requests took place frequently during every drive. 

Regarding the measured impact of ADF on driving behaviour, some stable effects can be 
observed. Overall, in the analysed driving scenarios, driving with the ADF leads to 

● a significant decrease of speed, 

● a significant increase of distances to the lead vehicle, 

● a significantly more stable lane keeping behaviour. 

Compared to that, results on vehicle dynamics and longitudinal regulation differ across scenarios. 
During approaching, cut-ins and lane changes, the ADF decelerates more strongly than a manual 
driver does, while in car following it decelerates and accelerates more strongly. If we look at the 
variation of speed and acceleration, longitudinal regulation is more stable with the ADF during 
uninfluenced driving and low speed scenarios, while in more dynamic scenarios like approaching 
and cut-ins, it is more abrupt. In summary, it seems that in scenarios that require continuous 
reaction to other vehicles and that might also benefit from anticipation of situational development, 
driving with an ADF is related to more pronounced longitudinal regulation than it would be in 
manual driving. 
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Lateral vehicle dynamics are reduced with the ADF for all scenarios except lane changes. Overall, 
driving with the ADF becomes more stable and more lane-bound due to a reduction of lane 
changes and approaching situations. This results in a higher proportion of driving time spent, 
especially in following scenarios. 

Interpretation of results on the frequency of potentially critical driving situations needs, again, to be 
treated cautiously. Overall, results indicate that especially the frequency of close distances to the 
lead vehicle is reduced. One explanation is that the ADF on average keeps larger distances to the 
vehicle and follows less closely. Furthermore, these results might be directly influenced by the 
nature of testing prototype functions: safety drivers were present during all drives, and it was their 
task to intervene before critical situations occurred. This might directly reduce the frequency of 
critical situations. Furthermore, the overall analysis is based entirely on objective thresholds 
applied to vehicle data, with no verification based on video recording. Especially indicators 
assessing rare events like critical situations are prone to be influenced by unusual events, outliers, 
but also sensor errors like ghost objects. For instance, the in-depth analysis done for a subset of 
data on critical situations with relation to surrounding traffic revealed that most of the objectively 
detected events were false positive events. In the end, for that subset of data the absolute number 
of verified critical situations was too small to draw any conclusions on the impact of ADF on event 
frequency. 

The analysis of calculated energy demand reveals a surprisingly high reduction of energy demand 
with the ADF. The reported effect is based on changes in driving behaviour (lower speed, more 
stable driving scenarios, ...). Effects of other influencing factors like vehicle type and energy 
demand of additional equipment are not considered. The overall reduction is probably partly 
influenced by trips taking place at a lower speed range on an urban highway. Here, it needs to be 
known that some drives repeatedly took place on urban motorways with a speed limit of 70km/h. A 
not completely balanced proportion of those trips taking place in baseline and ADF condition might 
impact the overall results on energy demand. Nevertheless, also for trips that mainly consisted of 
driving in traffic jams, a reduction of energy demand of 12% on average is found. 

The following pages show two summaries of all the results, one of changes in relation to baseline 
values and the other of reported effect sizes. PIs for which no significant effect could be found are 
set to zero in both summaries. Negative values in Table 3.12 show a decrease of the PI (e.g., 
lower speed), positive values an increase (e.g. larger distances) compared to baseline driving. 
With the colour coding it becomes easily visible whether the direction and size of effects are similar 
across scenarios or whether they vary between scenarios. (The colours do no judge whether the 
change has any positive or negative implications.) 
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Table 3.12: Percentual changes in PIs when comparing ADF-driven vehicle with manual vehicle in the baseline condition for different RQs. Blue 
indicates a reduction of the indicator compared to baseline and red an increase. The depth of the colouring codes the size of the effect. 

 

 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 84 

  

Table 3.13: Effect sizes for PIs when comparing ADF driven vehicle with manual vehicle in the baseline condition for different RQs. Blue indicates a 
reduction of the indicator compared to baseline and red an increase. The depth of the colouring codes the size of the effect. 
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3.2 Urban 
The following section describes the results for the urban ADF and answers the RQs specified in 
Section 2.3 and Annex 1. As mentioned in Section 2.5.1, it must be kept in mind that these results 
are all based on bootstrapped data and that this bootstrapping process will also have an influence 
on the results. Most importantly, it must be kept in mind that the bootstrapping process added a 
small amount of noise to the observations to make it harder to trace from which Pilot site an 
observation was originating. Therefore, extreme values in the histograms can be exaggerated due 
to the added noise. 

As mentioned in Section 2.5, the urban setting offered many possibilities for the variation of the 
Pilot site setting. Differences occurred in the setting of the Pilot site within the respective cities, the 
routing used for the pilots, as well as with the analysed ADFs, to name but three. Therefore, the 
results presented in this section should always be viewed with these limitations in mind. 

The results presented in the following sections, are discussed separately for intersections and for 
lane-bound scenarios (traffic following the lanes outside of intersections). Additionally, scenarios 
involving lane changes were analysed for the relevant RQs. These include lane change, cut-in 
and overtaking with both passive and active oncoming traffic. 

Finally, a series of results regarding roundabouts – generated using the Application Platform for 
Intelligent Mobility (AIM) (see section 2.5.6) – are presented and discussed at the end of this 
chapter. 

3.2.1 RQ-T1: How reliable is system performance in a given driving and traffic scenario? 

Due to the differences among the analysed functions within the urban context, a quantitative 
analysis of the performance of the functions within scenarios was not done for all scenarios, as the 
ODD of the functions differed. For some functions, ODD limits were reached multiple times per trip. 
Consequently, the function had to be deactivated and therefore the trips were split into multiple 
sections with ADF active for ADF per trip and one section per trip for baseline driving. This 
limitation of the analysed functions can also be seen in Figure 3.18, which shows the duration of 
sections where the ADF is active and the length of the complete trip for baseline. This can also be 
seen when looking at the median duration of trip sections (Table 3.14). 

Table 3.14: Median duration of trip sections: 

Condition Median Duration [min] 
Baseline 19.14 

ADF 11.07 
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Figure 3.18: Trip sections. For baseline, this is mostly the complete trip . For ADF, this is 
corresponding to sections with ADF active. 

3.2.2 RQ-T6: What Is the Impact of ADF on Vehicle Dynamics in Defined Driving Situations? 

For evaluation of the vehicle dynamics, the longitudinal and lateral accelerations were analysed for 
all three categories of scenarios. 

Lane-Bound Scenarios 

For lane-bound scenarios, the changes between baseline and ADF were small (Figure 3.19). The 
ADF tended to drive more smoothly in general, which was reflected in the smaller maximum 
respective larger minimum accelerations. For the case of minimum accelerations, one explanation 
could be the more cautious approach of the ADF reacting to vehicles and obstacles earlier 
compared to the human driver. 

 

Figure 3.19: Minimum accelerations within lane-bound scenarios. 
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Figure 3.20: Maximum accelerations within lane-bound scenarios. 

The standard deviations of the longitudinal accelerations within these scenarios were smaller for 
the ADF for all lane-bound scenarios (Figure 3.20). This can be interpreted as smoother 
acceleration behaviour, as would be expected by an ADF. A medium effect can, however, only be 
seen for uninfluenced driving, as this scenario allows adjusting the accelerations without influence 
where the smoother regulation of the ADF comes into play. A summary of driving dynamics in lane-
bound scenarios is given in Table 3.15. 

 

Figure 3.21: Standard deviations of longitudinal accelerations within lane-bound scenarios. 
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Table 3.15: Detailed results for the indicators of vehicle dynamics for lane-bound scenarios. 

Indicator Scenario Z p Change in % Effect Size 
max(|ay|) Approaching a lead vehicle -1.8 0.080 -1% -0.02 

Following a lead vehicle -6.6 0.000 -5% -0.09 

Uninfluenced driving -8.6 0.000 -25% -0.50 

max(ax) Approaching a lead vehicle -5.3 0.000 -13% -0.10 

Following a lead vehicle -8.6 0.000 -19% -0.28 

Uninfluenced driving -8.6 0.000 -34% -0.65 

mean(ax) Approaching a lead vehicle -4.9 0.000 -11% -0.08 

Following a lead vehicle 1.3 0.190 8% 0.01 

Uninfluenced driving 8.6 0.000 467% 0.23 

mean(ay) Approaching a lead vehicle 1.9 0.060 4% 0.03 

Following a lead vehicle 7.4 0.000 31% 0.11 

Uninfluenced driving 8.6 0.000 295% 0.68 

min(ax) Approaching a lead vehicle -1.0 0.324 -1% -0.02 

Following a lead vehicle 8.0 0.000 19% 0.14 

Uninfluenced driving 8.6 0.000 43% 0.53 

sd(ax) Approaching a lead vehicle 1.7 0.089 2% 0.03 

Following a lead vehicle -4.9 0.000 -5% -0.06 

Uninfluenced driving -8.6 0.000 -23% -0.4 

sd(ay) Approaching a lead vehicle 4.4 0.000 4% 0.06 

Following a lead vehicle 5.3 0.000 4% 0.06 

Uninfluenced driving -8.6 0.000 -20% -0.40 
 

Scenarios Involving Lane Changes 

For both lane-change and cut-in scenarios, the ADF decreased the standard deviation of 
longitudinal and lateral accelerations. The ADF also decreased the maximum absolute lateral 
accelerations in both scenarios (Figure 3.23) as well as the maximum longitudinal accelerations 
(Figure 3.24). However, for the lane-change scenario the decrease of maximum longitudinal 
acceleration was not statistically significant, possibly due to the larger variance with baseline 
values: With ADF the values were mostly between 0 to 1 m/s2, but baseline had a longer negative 
tail and more values around zero. The decrease in maximum acceleration with ADF was in line 
with the lane-bound scenarios. The mean and minimum longitudinal and lateral accelerations were 
not straightforward to interpret for the current scenarios – particularly since the sign of lateral 
accelerations changed during lane changes. 
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Figure 3.22: Maximum longitudinal accelerations within scenarios involving lane changes. 

 

Figure 3.23: Maximum absolute lateral accelerations within scenarios involving lane changes. 

Table 3.16: Detailed results for the indicators of vehicle dynamics for scenarios involving lane 
changes. 

Indicator Scenario Z p Change in % Effect Size 
max(|ay|) Cut-in -8.2 0.000 -22% -0.55 

Lane change -8.6 0.000 -25% -0.64 

max(ax) Cut-in -5.5 0.000 -11% -0.22 

Lane change -1.1 0.261 -2% -0.03 

mean(ax) Cut-in 4.9 0.000 37% 0.19 

Lane change -3.4 0.001 -67% -0.07 

mean(ay) Cut-in 8.6 0.000 396% 0.65 
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Indicator Scenario Z p Change in % Effect Size 
Lane change 8.6 0.000 172% 0.37 

min(ax) Cut-in 1.5 0.128 3% 0.03 

Lane change -3.0 0.003 -5% -0.05 

sd(ax) Cut-in -5.1 0.000 -9% -0.19 

Lane change -4.3 0.000 -5% -0.09 

sd(ay) Cut-in -7.6 0.000 -18% -0.40 

Lane change -4.7 0.000 -4% -0.09 
 

Intersections 

For intersections, effects were especially present for the lateral accelerations (cf. Table 3.17), 
which were mostly positive except for crossing with a laterally moving object, where the effect was 
negative. As would be expected, these effects were larger in general for turning at intersections 
compared to simply crossing them. This was in line with the more cautious approach of the ADF to 
challenging scenarios. 

For longitudinal accelerations, the effects were mixed (positive and negative) and small to medium 
at most, as is shown in the distributions in Figure 3.24, Figure 3.25, and Figure 3.26. This was to 
be expected, as the main influence on driving dynamics within intersections was probably the road 
network, and traffic regulations left less space for differences between ADF and human driving. 
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Figure 3.24: Minimum longitudinal accelerations within intersection scenarios. 
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Figure 3.25: Maximum longitudinal accelerations within intersection scenarios. 
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Figure 3.26: Standard deviations of the longitudinal accelerations within intersection scenarios. 

Table 3.17: Detailed results for the indicators of vehicle dynamics for intersection scenarios. 

Indicator Scenario Z p Change in % Effect Size 
max(|ay|) Crossing with laterally moving object -3.8 0.000 -11% -0.21 

Crossing with lead object 8.6 0.000 14% 0.19 

Crossing without conflict 8.6 0.000 13% 0.20 

Turning with laterally moving object -8.4 0.000 -14% -0.56 

Turning with lead object -8.5 0.000 -16% -0.34 

Turning without conflict -8.6 0.000 -29% -0.93 

max(ax) Crossing with laterally moving object -1.9 0.057 -3% -0.06 

Crossing with lead object 8.6 0.000 19% 0.21 

Crossing without conflict 7.2 0.000 3% 0.04 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 94 

  

Indicator Scenario Z p Change in % Effect Size 
Turning with laterally moving object -7.9 0.000 -12% -0.39 

Turning with lead object -7.9 0.000 -13% -0.25 

Turning without conflict 5.3 0.000 2% 0.04 

mean(ax) Crossing with laterally moving object 2.1 0.037 9% 0.05 

Crossing with lead object 8.5 0.000 38% 0.16 

Crossing without conflict 7.6 0.000 9% 0.05 

Turning with laterally moving object -4.9 0.000 -13% -0.21 

Turning with lead object -4.8 0.000 -16% -0.14 

Turning without conflict 8.6 0.000 28% 0.17 

mean(ay) Crossing with laterally moving object -7.5 0.000 -87% -0.45 

Crossing with lead object 6.2 0.000 43% 0.09 

Crossing without conflict 8.6 0.000 144% 0.26 

Turning with laterally moving object 7.4 0.000 1699% 0.28 

Turning with lead object 8.6 0.000 208% 0.32 

Turning without conflict 8.6 0.000 110% 0.89 

min(ax) Crossing with laterally moving object 0.3 0.756 1% 0.00 

Crossing with lead object -1.9 0.052 -5% -0.01 

Crossing without conflict 3.6 0.000 4% 0.01 

Turning with laterally moving object 0.1 0.896 1% 0.01 

Turning with lead object -4.1 0.000 -26% -0.09 

Turning without conflict 8.6 0.000 39% 0.24 

sd(ax) Crossing with laterally moving object -0.5 0.596 -2% -0.03 

Crossing with lead object 8.6 0.000 20% 0.22 

Crossing without conflict 3.5 0.001 1% 0.02 

Turning with laterally moving object -8.6 0.000 -16% -0.58 

Turning with lead object -6.7 0.000 -8% -0.18 

Turning without conflict -8.6 0.000 -17% -0.53 

sd(ay) Crossing with laterally moving object 1.6 0.110 3% 0.05 

Crossing with lead object 8.6 0.000 15% 0.18 

Crossing without conflict 8.6 0.000 12% 0.17 

Turning with laterally moving object -7.6 0.000 -13% -0.45 

Turning with lead object -2.7 0.008 -5% -0.09 

Turning without conflict -1.7 0.090 -1% -0.02 
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3.2.3 RQ-T7: What Is the Impact of ADF on the Accuracy of Driving? 

For intersections it was not possible to analyse the accuracy of driving in the same way as for lane-
bound scenarios because lanes were not that clearly defined within intersections. Therefore, 
positioning in the lane could not be analysed. 

The same was true of scenarios involving lane changes, where an analysis of deviation from the 
lane centre or movement within the lane could not be done. The movement conducted when 
changing lanes is already assessed when looking at the vehicle dynamics (cf. RQ-T6, Section 
3.2.2). 

Lane-Bound Scenarios 

To analyse the accuracy of driving, the mean position within the lane was analysed (Figure 3.27 
and Figure 3.28). This indicator specified how far the vehicles deviates from the middle of the 
current lane. Overall, it seemed that the ADF is better at driving in the lane centre, which was both 
expected and consistent with the results from the vehicle dynamics. The effect, however, was 
small. 

 

Figure 3.27: Mean position in lane in lane-bound scenarios. 
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Figure 3.28: Standard deviation of the position in lane in lane-bound scenarios. 

Table 3.18: Detailed results for the indicators for accuracy of driving. 

Indicator Scenario Z p Change in % Effect Size 
mean(Position in lane) Approaching a lead vehicle -7.6 0.000 -18% -0.20 

Following a lead vehicle -8.6 0.000 -20% -0.23 

Uninfluenced driving -4.9 0.000 -2% -0.02 

sd(Position in lane) Approaching a lead vehicle 4.2 0.000 41% 0.09 

Following a lead vehicle -4.6 0.000 -20% -0.05 

Uninfluenced driving 8.6 0.000 18% 0.06 
 

3.2.4 RQ-T8: What Is the Impact of ADF on the Driven Speed? 

For the impact on the driven speed, the mean and maximum driven speeds within scenario 
instances were analysed. 

Lane-Bound Scenarios 

The ADF had an impact on the driven speed (Figure 3.29). The effect was largest in uninfluenced 
driving because the ADF adhered to the speed limit of 50 km/h within cities, while human drivers 
did not necessarily do so. In scenarios where the ADF is influenced by other vehicles, the 
differences were smaller, as the ADF was then driving along with the other vehicles. The strict 
adherence to the speed limit, however, had implications for the scenarios encountered on these 
trips (cf. RQ-T11 (Section 3.2.5) & RQ-T12 (Section 3.2.6)). 
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Figure 3.29: Maximum driven speeds within lane-bound scenarios. 

 

Figure 3.30: Mean driven speeds within lane-bound scenarios. 

The standard deviation of the longitudinal acceleration (cf. RQ-T6, Section 3.2.2) in combination 
with the standard deviation of the driven speed (Figure 3.31) shows that changes in speed 
diminished for following and uninfluenced scenarios compared to baseline. For approaching 
scenarios, the standard deviations were slightly higher. 
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Figure 3.31: Changes in the standard deviations of lane-bound scenarios. 

Table 3.19: Detailed results for the indicators for driven speed in lane-bound scenarios. 

Indicator Scenario Z p Change in % Effect Size 
max(v) Approaching a lead vehicle -8.6 0.000 -10% -0.38 

Following a lead vehicle -8.6 0.000 -12% -0.36 

Uninfluenced driving -8.6 0.000 -20% -0.91 

mean(v) Approaching a lead vehicle -8.6 0.000 -12% -0.4 

Following a lead vehicle -8.6 0.000 -11% -0.31 

Uninfluenced driving -8.6 0.000 -22% -0.82 

sd(v) Approaching a lead vehicle 7.1 0.000 11% 0.16 

Following a lead vehicle -8.5 0.000 -18% -0.22 

Uninfluenced driving -8.6 0.000 -21% -0.24 
 

Scenarios Involving Lane Changes 

For scenarios involving lane changes, the maximum (Figure 3.32) and mean speeds (Figure 3.33) 
both showed differences when comparing ADF to baseline driving (cf. Table 3.20). For lane 
changes, the speeds were lower with ADF active, which was consistent with the overall driven 
speed of the ADF. Considering that the ADFs mostly only changed lane for navigational purposes, 
this result was conclusive. Cut-ins happened at higher speeds of the ADF compared to baseline, 
which is in line with the overall higher driven speed by the other vehicles. Therefore, cut-ins that 
influence the ADF mostly occurred when it was travelling at higher speeds. Cut-ins occurring when 
the ADF was travelling at a lower speed did not have (or more seldom had) an influence, as the 
other vehicle is mostly faster. 
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Figure 3.32: Maximum driven speeds within scenarios involving lane changes. 

 

Figure 3.33: Mean driven speeds within scenarios involving lane changes. 

The standard deviation of the driven speed against the standard deviation of the longitudinal 
acceleration (cf. RQ-T6, Section 3.2.2) shows that the regulation of the driven speed was less 
stable compared to baseline, whilst the regulation of the acceleration was slightly more stable. 
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Figure 3.34: Changes in the standard deviations of scenarios involving lane changes. 

Table 3.20: Detailed results for the indicators for driven speed in scenarios involving lane changes. 

Indicator Scenario Z p Change in % Effect Size 
max(v) Cut-in 8.2 0.000 13% 0.35 

Lane change -6.0 0.000 -4% -0.12 

mean(v) Cut-in 8.0 0.000 13% 0.29 

Lane change -8.3 0.000 -8% -0.26 

sd(v) Cut-in 7.1 0.000 22% 0.26 

Lane change 8.6 0.000 41% 0.40 
 

Intersections 

For intersection scenarios, the same holds true as for lane-bound scenarios: The speed limit had 
more influence on ADFs than it has on human drivers. Especially in the scenarios of crossing and 
turning without conflict, it can clearly be seen that the speed limit made a difference in the travelled 
speeds across intersections. The effect and the percentual change were almost the same for 
crossing and turning, although the travelled speeds were higher for crossing scenarios. For the 
other scenarios, the influence of the other road users again had an influence on the driven speed 
for both ADF and baseline. 
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Figure 3.35: Maximum driven speeds within intersection scenarios. 
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Figure 3.36: Mean driven speeds within intersection scenarios. 

As for the other two scenario categories (lane-bound, lane-change), the standard deviations of the 
longitudinal acceleration (cf. RQ-T6, Section 3.2.2) were compared with those of the driven speed 
(Figure 3.37). The results for intersections were more mixed, showing better regulation of the 
accelerations for all turning scenarios, while the speed regulations for the turning case were mixed. 
For crossing, the regulation of speed was less stable with ADF, whereas the regulation of 
accelerations showed mixed results. 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 103 

  

 

Figure 3.37: Changes in the standard deviation for intersection scenarios. 

Table 3.21: Detailed results for the indicators for driven speed in intersection scenarios. 

Indicator Scenario Z p Change in % Effect Size 
max(v) Crossing with a laterally moving object 7.7 0.000 9% 0.29 

Crossing with a lead object -6.3 0.000 -2% -0.07 

Crossing without conflict -8.6 0.000 -13% -0.58 

Turning with a laterally moving object -7.7 0.000 -5% -0.17 

Turning with a lead object -8.4 0.000 -9% -0.20 

Turning without conflict -8.6 0.000 -12% -0.56 

mean(v) Crossing with a laterally moving object 7.8 0.000 11% 0.26 

Crossing with a lead object -8.5 0.000 -6% -0.16 

Crossing without conflict -8.6 0.000 -15% -0.56 

Turning with a laterally moving object -3.3 0.001 -3% -0.10 

Turning with a lead object -7.7 0.000 -10% -0.21 

Turning without conflict -8.6 0.000 -16% -0.63 

sd(v) Crossing with a laterally moving object 4.0 0.000 9% 0.12 

Crossing with a lead object 8.6 0.000 53% 0.37 

Crossing without conflict 8.6 0.000 34% 0.21 

Turning with a laterally moving object -5.0 0.000 -11% -0.20 

Turning with a lead object 0.0 0.995 -1% -0.01 

Turning without conflict 8.3 0.000 10% 0.13 
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3.2.5 RQ-T11: What Is the Impact of ADF on the Frequency of Certain Events? 

The analysis of this RQ is split into two parts. First, the analysis of some events is described on trip 
level, independent of scenario. Afterwards, the analysis is described on scenario-level. 

On trip level, the frequency and duration of stillstands was analysed. As can be seen (Figure 3.38, 
Table 3.22), ADF had a small effect on these two indicators. The duration of stillstands slightly 
decreased, while their frequency slightly increased. As for many indicators in the urban 
environment, it can again be concluded that the overall influences imposed on ADF and baseline 
by the urban environment equally had more effect on the driving and traffic behaviour compared to 
the behaviour implemented within the ADFs. 

 

Figure 3.38: Frequency and duration of stillstands on trip level. 

Table 3.22: Detailed results for frequency and duration of stillstands on trip level. 

Indicator Z p Change in % Effect Size 
m(Dur(v<0,2km/h)) -4.3 0.000 -3% -0.07 

N(v<0,2km/h)/h 7.7 0.000 8% 0.16 
 

Lane-Bound Scenarios 

For the lane-bound scenarios, it can be observed that almost all scenarios were overall shorter 
with ADF active. Approaching a lead object was the only scenario that decreased in frequency. 
This can be explained by the lower travelled speed of the ADF leading to more uninfluenced 
driving, which can also be seen when looking at the frequency of uninfluenced driving. On the 
other hand, uninfluenced driving scenarios were shorter, which means that the uninfluenced state 
was often interrupted by other traffic participants. This can also be seen for the following scenario, 
which almost doubled in frequency but was shorter compared to baseline. Again, the explanation 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 105 

  

lies within the lower speed driven by the ADF, resulting in leading vehicles leaving the influencing 
zone in front of the ADF faster compared to baseline. 

 

Figure 3.39: Change in the frequency and duration of lane-bound scenarios. 

Table 3.23: Detailed results for the indicators for the frequency of scenarios. 

Indicator Scenario Z p Change in % Effect Size 
Frequency Approaching a lead object -8.3 0.000 -22% -0.20 

Following a lead vehicle 8.6 0.000 95% 0.37 

Following a lead VRU 7.3 0.000 29% 0.17 

Uninfluenced driving 8.6 0.000 24% 0.59 

Duration Approaching a lead object 1.7 0.082 1% 0.02 

Following a lead vehicle -8.6 0.000 -37% -0.57 

Uninfluenced driving -8.6 0.000 -44% -0.60 
 

Scenarios Involving Lane Changes  

For scenarios involving lane changes, Figure 3.40 shows that both scenarios had a longer duration 
with ADF active compared to baseline trips. Lane changes were longer and less frequent. A 
possible explanation could be the tendency of the ADF to choose its desired lane quite early 
(based on the configured route) and stick to it for the lane change. Distances kept to other vehicles 
and the overall lower travelled speed are again the explanation for fewer cut-ins occurring when 
travelling with ADF active. As shown in RQ-T8 (Section 3.2.4), the difference in travelled speed 
was rather small for cut-ins and resulted in smaller changes of cut-in duration. 
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Figure 3.40: Changes in the duration and frequency of scenarios involving lane changes. 

Table 3.24: Detailed results for the indicators for the frequency of scenarios involving lane 
changes. 

Indicator Scenario Z p Change in % Effect Size 
Frequency Cut-in -8.6 0.000 -38% -0.45 

Lane change -8.6 0.000 -26% -0.43 

Duration Cut-in 5.0 0.000 7% 0.15 

Lane change 8.6 0.000 44% 0.80 
 

Intersections 

At intersections, most scenarios had a longer duration with ADF active (cf. Figure 3.41 and Table 
3.25). This was consistent with the lower driven speed within intersection (cf. RQ-T8, Section 
3.2.4). The only outlier was the scenario Crossing with laterally moving objects, which was shorter 
and occurred more often with ADF active. 

The increase in scenarios involving laterally moving objects was probably a result of the lower 
speeds of the ADF. Additionally, gaps kept to the lead vehicle were mostly larger. This probably 
encouraged other road users to utilise that gap and to drive into the ADF’s lane or to cross the 
intersection in that larger gap. 
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Figure 3.41: Change in the duration and frequency of intersection scenarios. 

Table 3.25: Detailed results for the indicators for the frequency of scenarios. 

Indicator Scenarios Z p Change 
in % 

Effect 
Size 

N(Crossing with laterally moving non 
VRU object)/N(Crossing) 

Crossing with laterally 
moving object 

8.6 0.000 123% 0.43 

N(Crossing with laterally moving 
pedestrian)/N(Crossing) 

Crossing with laterally 
moving object 

7.6 0.000 62% 0.13 

N(Crossing with lead 
object)/N(Crossing) 

Crossing with lead 
object 

-
3.4 

0.001 -4% -0.06 

N(Turning with laterally moving 
object)/N(Turning) 

Turning with laterally 
moving object 

-
2.2 

0.028 -3% -0.04 

N(Turning with laterally moving 
VRU)/N(Turning) 

Turning with laterally 
moving object 

7.3 0.000 29% 0.10 

N(Turning with lead object)/N(Turning) Turning with lead 
object 

4.4 0.000 6% 0.05 

Duration Crossing with laterally 
moving object 

-
7.6 

0.000 -15% -0.36 

Crossing with lead 
object 

8.6 0.000 18% 0.25 

Crossing without 
conflict 

8.6 0.000 12% 0.21 

Turning with laterally 
moving object 

8.3 0.000 12% 0.38 

Turning with lead 
object 

8.6 0.000 19% 0.39 

Turning without 
conflict 

8.6 0.000 26% 0.48 
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3.2.6 RQ-T12: What Is the Impact of ADF on the Interaction with Other Road Users in a 
Defined Driving Scenario? 

For analysing the interaction with other road users, the distances and relative measures to the lead 
vehicle were considered, as these had an influence on the behaviour of the ego-vehicle. 

Lane-Bound Scenarios 

For the interaction in lane-bound scenarios, the time headway (THW) to the preceding vehicles 
was analysed. The minimum and mean THW was higher in these scenarios with ADF active 
compared to baseline. However, the effect was small. As already shown in the earlier RQs, the 
cases where influenced driving occurs were often those where the traffic was limited overall by 
(infrastructure) restrictions imposed by the urban environment. Therefore, when influenced driving 
occurred, differences between ADF and baseline are small. 

 

Figure 3.42: Mean THW for lane-bound scenarios. 

 

Figure 3.43: Minimum THW for lane-bound scenarios. 
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Table 3.26: Detailed results for THW indicators for lane-bound scenarios. 

Indicator Scenario Z p Change in % Effect Size 
mean(THW) Approaching a lead vehicle 5.7 0.000 5% 0.05 

Following a lead vehicle 8.6 0.000 8% 0.27 

min(THW) Approaching a lead vehicle 8.4 0.000 9% 0.24 

Following a lead vehicle 8.2 0.000 6% 0.14 
 

Scenarios Involving Lane Changes  

For scenarios involving lane changes, the interaction with other road users was analysed using the 
duration of these scenarios. Lane changes and thereby the potential interaction with other road 
users were longer. As already described within RQ-T11 (Section 3.2.5), these interactions were 
slightly longer. Again, the higher overall speed of other traffic is shown in the relative measures of 
objects during a cut-in, which were all higher in their mean respective minimum values. 

 

Figure 3.44: Duration of scenarios involving lane changes. 

Interaction with other road users during cut-ins happened further away from the ego-vehicle with 
ADF active compared to baseline. 
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Figure 3.45: Indicators for the interaction in cut-in scenarios. 

Table 3.27: Detailed results for the indicators for the interaction in scenarios involving lane 
changes. 

Indicator Scenario Z p Change in % Effect Size 
mean(Long. distance lead vehicle) Cut-in 7.9 0.000 22% 0.29 

mean(speed lead vehicle) Cut-in 5.4 0.000 11% 0.14 

min(THW) Cut-in 3.5 0.000 10% 0.08 

Duration Cut-in 5.0 0.000 7% 0.15 

Lane change 8.6 0.000 44% 0.80 
 

Intersections 

To analyse interactions at intersections, similar PIs as for driving outside of intersections were 
analysed. The mean longitudinal distance the ADF kept when travelling through intersections while 
following a lead vehicle (cf. Figure 3.46) was not different from baseline. For the crossing case, the 
ADF kept slightly lower distances, but for the turning case, the ADF kept larger distances. Both 
effects were, however, small. 
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Figure 3.46: Minimum longitudinal distance to the lead vehicle in intersections. 

Interactions with laterally moving objects happened before or after the ego-vehicle. Looking at the 
minimum distances (cf. Figure 3.47), no differences were directly apparent, and the effect was 
minor (cf. Table 3.28). 

 

Figure 3.47: Minimum distance to the laterally moving object in intersections. 
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Table 3.28: Detailed results for the indicators for the interaction in intersections. 

Indicator Scenario Z p Change in 
% 

Effect 
Size 

mean(Long Distance Lead 
Vehicle) 

Crossing with lead object -6.2 0.000 -4% -0.07 

Turning with lead object 8.6 0.000 26% 0.34 

min(Distance) Crossing with laterally 
moving object 

1.5 0.128 1% 0.01 

Turning with laterally moving 
object 

0.8 0.452 2% 0.00 

 

3.2.7 RQ-T15: How Does the ADF Influence the Behaviour of Subsequent Vehicles? 

Analysing the behaviour of subsequent vehicles proved challenging, as no scenarios were defined 
which captured this interaction. In comparison to the motorway, an in-depth analysis was also not 
possible since no videos to the rear were available for all Pilot sites. Therefore, the results in this 
section are based on the rather noisy signals for the rear vehicles and were only analysed outside 
of intersections. 

Lane-Bound Scenarios 

For lane-bound scenarios, the THW to the rear vehicles was mostly smaller for ADF compared to 
baseline. This is in line with the subsequent analyses in previous RQs, which found that the ADF 
drove at lower speeds compared to baseline. Thus, assuming higher speed for the overall traffic, 
this was confirmed by the lower THW values. The only outlier in this consideration was the mean 
THW for the following scenario. One explanation for this could again be the higher travelled speeds 
in the baseline resulting in seamlessly flowing along with the traffic, also resulting in the small 
distances kept in queued driving often seen within urban environments. 

 

Figure 3.48: Minimum THW of rear vehicles in lane-bound scenarios. 
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Figure 3.49: Mean THW of rear vehicles in lane-bound scenarios. 

Table 3.29: Detailed results for the indicators for subsequent vehicles in lane-bound scenarios. 

Indicator Scenario Z p Change in % Effect Size 
mean(THW rear veh.) Approaching a lead vehicle -2.3 0.022 -17% -0.12 

Following a lead vehicle 5.5 0.000 34% 0.23 

Uninfluenced driving -7.1 0.000 -9% -0.10 

min(ax rear veh.) Approaching a lead vehicle -8.6 0.000 -45% -0.32 

Following a lead vehicle -8.6 0.000 -45% -0.22 

Uninfluenced driving -8.6 0.000 -51% -0.14 

min(THW rear veh.) Approaching a lead vehicle -8.1 0.000 -53% -0.73 

Following a lead vehicle -8.6 0.000 -73% -0.63 

Uninfluenced driving -8.6 0.000 -69% -1.20 

sd(THW rear veh.) Approaching a lead vehicle -1.0 0.314 -6% -0.02 

Following a lead vehicle 8.4 0.000 80% 0.19 

Uninfluenced driving 8.6 0.000 99% 0.26 
 

Scenarios Involving Lane Changes  

For scenarios involving lane changes, the results indicated good predictability of the behaviour of 
the ADF during lane changes, resulting in higher THWs of the rear vehicle. However, this also 
resulted in larger decelerations of the rear vehicle to make room for the ego-vehicle early on when 
ADF was active. That this effect was clearer for the active lane change compared to the cut-in, 
confirmed this assumption. 
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Figure 3.50: Minimum THW for rear vehicles in scenarios involving lane changes. 

 

Figure 3.51: Mean THW for rear vehicles in scenarios involving lane changes. 

Table 3.30: Detailed results for the indicators for subsequent vehicles in scenarios involving lane 
changes. 

Indicator Scenario Z p Change in % Effect Size 
mean(THW rear veh.) Cut-in 0.8 0.428 6% 0.07 

Lane change 8.4 0.000 71% 0.60 

min(ax rear veh.) Cut-in -3.0 0.003 -14% -0.10 

Lane change -8.6 0.000 -68% -0.28 

min(THW rear veh.) Cut-in 4.4 0.000 13% 0.08 

Lane change 2.9 0.004 15% 0.10 

sd(THW rear veh.) Cut-in 6.8 0.000 75% 0.22 
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Indicator Scenario Z p Change in % Effect Size 
Lane change 8.5 0.000 110% 0.23 

 

3.2.8 RQ-T16: How Does the ADF Influence the Behaviour of Preceding Vehicles? 

As already concluded in previous RQs, for many scenarios one of the main influencing factors is 
the urban environment and not necessarily the difference between ADF and human driver. 
Therefore, the behaviour of the preceding vehicles was only analysed for lane-bound scenarios or 
only for the following and approaching scenarios. The assumption is confirmed that following and 
approaching scenarios happened at lower speeds when ADF was active compared to baseline 
driving. Table 3.31 shows that the changes were similar in size (as were the effects), so it was 
concluded that the ADF did not have an influence on the behaviour of the preceding vehicle. 

 

Figure 3.52: Mean driven speed of the preceding vehicle in the approaching and following 
scenario. 

Table 3.31: Detailed results for the mean driven speed of the ego and preceding vehicle in the 
approaching and following scenario. 

Indicator Scenario Z p Change of mean in % Effect Size 
mean(v) Approaching a lead vehicle -8.6 0.000 -12% -0.4 

Following a lead vehicle -8.6 0.000 -11% -0.31 

mean(v lead veh.) Approaching a lead vehicle -8.6 0.000 -16% -0.36 

Following a lead vehicle -8.6 0.000 -11% -0.26 
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3.2.9 AIM Mobile Traffic Acquisition Results 

This chapter presents and discusses the results of the analysis of ADF and baseline vehicular 
trajectory data collected at an urban roundabout. First, the results of the driver’s own driving 
behaviour are presented, followed by the interaction behaviour. In Table 3.32 and Table 3.33 
summarise the relevant aggregated findings on own driving and interaction behaviour. 

Table 3.32: Aggregated findings on own driving behaviour. 

 

Table 3.33: Aggregated findings on interaction behaviour. 
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3.2.9.1 Own Driving Behaviour 

In the roundabout, the ADF vehicle was validly detected 28 times by the AIM mobile units. In 27 
cases the AV entered the roundabout in the north and exited in the east; in one case it returned to 
the north. The trajectories and the derived kinematic parameters of these 27 cases were used for 
further analysis.  

To compare the driving behaviour of ADF with manually driven vehicles from the whole data, 
trajectories of manually driven vehicles as baseline trajectories that matched the conditions of the 
ADF vehicles were randomly selected. The matching conditions included (i) the same path, i.e., 
entering in the north and exiting in the east of the roundabout, and (ii) the same environmental and 
traffic conditions (trajectories were considered only 30 min before and after the presence of the 
ADF vehicle). 

Eventually, 69 MV trajectories were selected for the baseline, which led to an approximate 1:2 
relationship of ADF vs. baseline drives. Figure 3.53 shows the trajectories of both. Note the 
difficulty detecting the ADF vehicle in the upper left of the roundabout (left), which led to trajectory 
corruptions. 

 

Figure 3.53: ADF trajectories (left) and baseline trajectories (right). 

3.2.9.1.1 RQ-T6 / Longitudinal Acceleration 
Due to the small sample size (N = 5) of ADF vehicles in the entering phase, the obtained results 
are highly uncertain. Regardless of the entering phase, the maximum acceleration, the absolute 
values of the minimum acceleration, and the interquartile ranges (IQR) of the longitudinal 
acceleration of the ADF vehicle are generally lower compared to baseline. 

Considering the maximum acceleration (Figure 3.54, left), a marginal but statistically significant 
difference was found between ADF and baseline (F = 6.1; df = 1; p = .01; partial eta² = .02), which 
is beyond meaningful interpretation. Looking at the minimum acceleration (Figure 3.54, right), no 
significant differences between ADF and baseline were found, whereas a small but clear effect 
results from the roundabout phase (F = 29.4; df = 1; p = .00; partial eta² = .10). The IQR of the 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 118 

  

longitudinal acceleration was examined (not shown) as an indicator for the smoothness of the 
passage. With an average difference of 0.4 m/s² the ADF vehicle showed a significantly lower 
variance than the baseline (F = 13.1; df = 1; p = .00; partial eta² = .05). It is worth noting that in the 
entering phase–which shows the opposite trend–the subsample size for ADF is only six, since 
most trajectories were corrupted. 

 

Figure 3.54: Mean and standard deviation of longitudinal acceleration of the baseline (grey) and 
ADF vehicle (blue): maximum (left) and minimum (right) values. 

3.2.9.1.2 RQ-T7-1 / Manoeuvre Precision 
To reduce the lateral position noise, the trajectories data of ADF and manually driven vehicles was 
filtered with an Unscented Kalman Filter (UKF). The method introduced in section 2.5.6.2 was 
applied to quantify manoeuvre precision at four virtual loops in the roundabout crossed by all ADF 
and manually driven vehicles, i.e., entering loop 27, circling loop 29 and two exiting loops 30 and 
31. 
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Figure 3.55: Distance to the mean of trajectories intersecting virtual loops 27, 29, 30, 31. 

In Figure 3.55 no clear difference between ADF and baseline can be identified. However, using a 
univariate ANOVA the marginally lower manoeuvre precision of the ADF vehicle reaches statistical 
significance (F = 4.8; df = 1; p = .03). Considering the occasionally poor detection performance, the 
extremely small effect size (explained variance: partial eta² = .01), and the fact that the average 
difference between ADF and baseline is only 0.09 metres, this outcome should not be overrated. 

3.2.9.1.3 RQ-T7-2 / Lane Keeping Performance 
Due to the presence of five available ADF trajectories in the entering phase only, the analysis of 
lane keeping performance focused on the circling and exiting phases, while the latter was 
separated into exiting (1) and exiting (2). Further, two corrupted ADF trajectories occurred at the 
beginning of the circling phase, and were thus removed from statistical analysis. 

All in all, the ADF vehicle shows a slightly lower lane keeping performance than the baseline, 
especially in the circling and first part of the exiting phase. In the second part of the exiting phase 
no significant difference between the baseline and the ADF vehicles occurred. 
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Figure 3.56: Lane keeping performance results of the inference statistical tests; mean offset from 
the reference trajectory (left), mean lateral oscillation (right). 

Assessing the directional stability of each drive, the standard deviation was chosen as the indicator 
for lateral deviation from the mean (see section 2.5.6.2). A univariate ANOVA revealed that the 
moderate difference in lane keeping performance between the ADF and baseline vehicles occur in 
the circling and first exiting phase (Figure 3.56) reached high statistical significance (F = 33.6; 
df = 1; p = .00) while showing a small effect size (average difference = .12 m; partial eta² = .11). 
Regarding the offset from the reference trajectory, particularly in the circling phase, manual drivers 
tended to cut the roundabout (mean drawn to the left) and again in the opposite direction, before 
exiting on the right. Investigating this mean lateral deviation appeared to show, that manual driving 
behaviour differed significantly from that with ADF (F = 28.2; df = 1; p = .00; partial eta² = .09). 
However, the phase in itself had a larger effect on the offset than automation (F = 48.5; df = 1; 
p = .00; partial eta² = .15). 

3.2.9.1.4 RQ-T8 / Driven Velocity 
Due to having only five available ADF trajectories in the entering phase the obtained results are 
highly uncertain. Investigating the average speed (Figure 3.57, left), it is clearly seen that the 
means for the ADF vehicle are slightly lower in every phase, which leads to a significant result of 
a univariate ANOVA (F = 21.2; df = 1; p = .00). However, this effect is small (average difference 
between ADF and baseline vehicles is 0.2 m/s; partial eta² = .08) and the phase has a much larger 
effect on the average speed than automation (F = 261.2; df = 1; p = .00; partial eta² = .51). 
Regarding the maximum speed driven, three physically rather unlikely extreme values were 
removed before the analysis, yielding results similar to the average speeds (Figure 3.57, right): 
There is a significant but small (-0.8 m/s in average) effect of the ADF vehicle (F = 20.4; df = 1; 
p = .00; partial eta² = .07), but a much larger one for the phase (F = 421.7; df = 1; p = .00; partial 
eta² = .62). Finally, assessing the IQR of the speed as a measure of the stability of driving, the 
differences are small and no clear tendency can be seen (not shown). Consequently, no 
statistically significant results could be found. 
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Figure 3.57: Inference statistical values of driven velocity of the baseline (grey) and ADF vehicle 
(blue): average (left) and maximum (right) values. 

3.2.9.2 Interaction with Other Road Users 

The 27 valid ADF trajectories going from the north to east exits of the roundabout were considered 
to measure the interactions with other road users such as VRU and other motorised vehicles. The 
relevant interaction scenarios considered are car-following, crossing or merging, and are 
introduced in the AIM methodology (Section 2.5.6). For the driving scenarios car-following, merging 
and VRU crossing, the relevant thresholds for THW and TTC (car-following) as well as PET 
(merging / crossing) were set to six seconds in any case. Situations above those thresholds were 
ignored. It appeared that only one crossing interaction between an ADF vehicle and a VRU 
occurred and altogether five relevant car-following and six merging situations, which make a 
sensible analysis and comparison with the baseline impossible; thus, the results are not shown. 
Instead, the focus was on analysing the normal driving and interaction behaviour of human road 
users to support maturing the ADF of automated vehicles. Concerning normal behaviour, 
altogether 80 859 car-following, 30 171 merging and 514 VRU crossing situations were identified. 
The results obtained regarding car following, VRU behaviour and number of incidents and near-
crashes are presented in Annex 5. 

3.2.9.2.1 RQ-T13 / Journey Times (JT) 
The analysis of JT in the phases entering, circling and exiting required removing some outliers (two 
in the case of ADF, six in baseline). At an average difference of 1.2 seconds, a univariate ANOVA 
revealed that the ADF vehicle passed the roundabout significantly slower than the baseline 
vehicles (F = 101.8; df = 1; p = .00; partial eta² = .30). Over all three phases the ADF vehicle 
generates a loss time of approximately 3.5 seconds, which is more than 40% larger than the JT of 
the baseline vehicles. 
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Figure 3.58: Journey time results of the inference statistical analysis. 

3.2.9.3 Interpretation and Implications of the Results 

Despite significant differences in acceleration between ADF and human drivers, this effect is small 
and no significant differences in braking occurred. These results imply that the ADF vehicle and 
human drivers behave similarly in the same situation. Considering that ADF trajectories show a 
lower variability than the baseline vehicles, it is expected that automated vehicles should be made 
to accommodate the passenger with smooth driving, whereas a human driver might like to enjoy 
the acceleration capabilities he or she paid for. Keeping in mind that just one vehicle with ADF and 
very specific function layout was compared against a set of different human drivers with different 
skills and different vehicle types, assessing several vehicles with different ADF setups may have 
yielded a wider variety of driving behaviour, too. 

Regarding manoeuvre precision, a very small, but statistically significant effect was found. 
Considering that the average difference between ADF and baseline was just 0.09 metres – which 
is within the range of position uncertainty of approximately 0.25 to 0.50 metres – the performance 
of both can be considered almost identical. 

Assessing the lane keeping performance, the ADF occurs to oscillate slightly more than human 
drivers do. Furthermore, it appeared that human drivers tend to cut the roundabout, while the ADF 
vehicle sticks closer to a normative trajectory. Again, ADFs are designed for safe, less risky, and 
comfortable driving and thus should show a less dynamic driving behaviour than human drivers. 

Average and maximum speed of the ADF vehicle occur slightly but significantly less than for the 
human drivers. An explanation for this may be that the ADF has a rather large and stable safety 
margin, whereas human drivers might engage in more risky driving than the ADF. However, these 
effects are small–most probably coming from the physical limits that arise from the topology of a 
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roundabout – and the phase has a much larger effect on speed than automation. In conclusion, 
ADF and human drivers behave rather similarly with regard to speed choice. As a consequence of 
the lower speeds, the ADF vehicle drives significantly slower through the roundabout than human 
drivers, showing a longer journey time. 

The results obtained may indicate that the variability of different human drivers with their different 
driving skills using different vehicle types is greater than in case of the automated vehicles, which 
should show limited acceleration and deceleration performances, and also a bit of predictability of 
their driving behaviour. 

3.2.10 Summary, Urban ADF 

As is the case with the motorway ADF, interpretation of the results on system availability and 
stability needs to be done carefully for the urban ADF. It must be kept in mind that the tested ADFs 
are still on a prototype level. Furthermore, it is likely that the circumstances of data collection (e.g., 
prototype ADFs, safety drivers who might prevent sudden TORs through early intervention) impact 
the results as wells so that a direct conclusion on driving with a market-ready mature ADF is 
challenging. As an additional factor regarding the urban analysis, one should consider that the 
urban Pilot sites of this project cover only a small portion of the variety of urban settings and traffic. 
Just as for the motorway, certain scenarios will probably also not be recordable during the pilots, 
as safety drivers are always present to intervene. Also, these safety drivers always occupy the 
driver’s seat within the urban Pilot sites, so that driver reactions to misbehaviour of automated 
driving cannot be thoroughly investigated. Additionally, this also holds true for TORs which cannot 
be analysed in the urban setting, as most Pilot sites cover the complete Pilot sites, i.e., from 
starting in the parking lot to ending in the parking lot with no planned TORs in traffic. Additionally, 
none occurred during the piloting or they were caught by the safety driver quite early. 

For the measured impact of ADF on the driving behaviour, the results are not quite as clear as for 
the motorway. Some basic considerations are as follows: 

Automated vehicles adhere to the speed limits, resulting in a mostly overall lower driven speed. 

Results on vehicle dynamics are mixed and depend upon the scenario. 

The overall conclusion is, that ADF behaviour is similar to that of human driving within the urban 
environment. Considering the overall reduced speed of the ADF, an increase in safety can be 
stated. Of course, this will also lead to slightly higher travel times, but the differences here are 
marginal, so that the overall effect should be minimal. Further, another big advantage of the ADF is 
increased attentiveness and the fact that the ADF is always alert and has fast reaction times. This 
can lead to an overall increase in safety by the introduction of ADFs in the urban environment. 
Since incidents were not within the scope of the analysis within L3Pilot, only assumptions can be 
made on this topic. 

For lane-bound scenarios, a difference between influenced and uninfluenced driving can be 
observed. In influenced scenarios, the effects are rather small, which can be explained by the ADF 
having a better sensing of subtle changes in the dynamics of other vehicles and therefore an 
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advantage when reacting to other vehicles. For uninfluenced driving, larger effects were observed. 
This holds true especially for the dynamics and driven speeds of vehicles. 

For intersections however, for most RQs no overall effect can be stated. What can be said is that 
intersections and the handling of those scenarios are mainly influenced by the infrastructure and 
other traffic participants. Consequently, effects are often mixed depending on the PI and the 
scenario. For most intersection scenarios it can be said, that travelling through intersections takes 
longer when using the ADF. 

An additional point which influences the results for the urban ADF is that the data was 
bootstrapped (cf. Section 2.5.1). The bootstrapping method also added some noise to the data (to 
prevent identifiability). In principle, this makes it more challenging to find significant effects. It may 
also exaggerate the extreme values (minimum or maximum) visible in the histograms. However, 
the amount of noise added was so small that these potential drawbacks cannot have influenced 
our conclusions. A detailed discussion of the bootstrapping process is given in Annex 4. 

The following pages show two summaries of all the results for the urban ADF, one of reported 
effect sizes and one of changes in relation to baseline values. PIs for which no significant effect 
could be found are set to zero in both summaries. Negative values show a decrease of the PI (e.g., 
lower speed) and positive values an increase (e.g., larger distances). With the colour coding it 
becomes easily visible whether the direction and size of effects are similar across scenarios or 
vary between them.
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Table 3.34: Overview of changes to indicators for urban RQs. 
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Table 3.35: Overview of effects for indicators used in urban RQs. 
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3.3 Parking 
For parking, the results are based on effect sizes and percental changes of PI attributes calculated 
for the five individual studies. Therefore, all graphs show the single data points, the average across 
all studies and the range between studies. The tables give the number of studies providing results 
for one specific PI (N studies), the proportion of those studies with significant differences between 
ADF and baseline and the proportions of studies reporting a significant increase or decrease of the 
PI. 

3.3.1 RQ-T6: What Is the Impact of ADF on Vehicle Dynamics in Defined Driving Situations? 

For this RQ, PIs reflecting lateral and longitudinal acceleration of the vehicle are analysed. As can 
be seen in Figure 3.59, there is a significant reduction of lateral dynamics (measured via maximum 
absolute lateral acceleration, max(abs(ay))) and standard deviation of lateral acceleration (sd(ay))) 
for all studies. For longitudinal accelerations, results on the directions of effects are mixed. For 
instance, two studies report a significant decrease of maximum deceleration (min(ax)), one reports 
no change and another reports a significant increase. In a similar way, also results on maximum 
longitudinal acceleration (max(ax)) are mixed. Four out of five studies report a significant reduction 
of the variation of longitudinal acceleration (sd(ax)). 

 

Figure 3.59: Results for indicators assessing vehicle dynamics. 
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Table 3.36: Summary of results on indicators assessing vehicle dynamics while parking. 

Performance 
indicator 

N studies % studies with significant 
result 

% studies with 
significant 
enhancement 

% studies with 
significant 
reduction 

min(ax) 5 100% 20% 80% 

max(ax) 5 40% 20% 20% 

sd(ax) 5 80% 0% 80% 

max(abs(ay)) 4 100% 0% 100% 

sd(ay) 4 100% 0% 100% 
 

3.3.2 RQ-T7: What Is the Impact of ADF on the Accuracy of Driving? 

To analyse the accuracy of parking, the duration of parking manoeuvres (m(duration) and the 
number of stops (N(stops)) within one manoeuvre are analysed. All studies report that parking 
needs significantly more time with ADF and that the single manoeuvres include more stops than in 
manual parking. The duration of manoeuvers increased between 50% and 200%, the number of 
stops between 35% and 500%. 

 

Figure 3.60: Results of indicators assessing the accuracy of parking. 

Table 3.37: Summary of results on indicators assessing accuracy of driving while parking. 

Performance 
indicator 

N 
studies 

% studies with 
significant increase 

% studies with 
significant reduction  

m(Duration) 5 100% 0% 

n(Stops) 4 100% 0% 
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3.3.3 RQ-T8: What Is the Impact of ADF on the Driven Speed? 

All studies report that speed while parking with the ADF decreases significantly. The reduction of 
mean speed (m(v)) varies between 42% and 66% and for maximum speed (max(v)) between 25% 
and 50%. Furthermore, the variation of speed (sd(v)) is significantly smaller. 

 

Figure 3.61: Results of indicators assessing the speed during parking. 

Table 3.38: Summary of results on indicators assessing speed while parking. 

Performance 
Indicator 

N 
studies 

% studies with 
significant result 

% studies with 
significant 
enhancement 

% studies with 
significant 
reduction 

m(v) 5 100% 0% 100% 

max(v) 5 100% 0% 100% 

sd(v) 5 100% 0% 100% 
 

3.3.4 Summary Parking ADF 

Over all studies, parking with a parking chauffeur takes significantly longer than manual parking. 
This is due to lower speed and more stops within a parking manoeuvre. Furthermore, lateral 
dynamics are reduced while parking with the ADF. It seems that this is also a direct consequence 
of the reduced speed while parking with the ADF. 
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4 User and Acceptance Evaluation 

Following the results of the Technical and Traffic Evaluation, this chapter presents the results of 
the User and Acceptance evaluations performed within L3Pilot. It discusses the results for the 
motorway, urban and parking ADF. As described in the previous sections, a series of questions 
were administered to investigate the users’ evaluation and their acceptance of the system which 
they had experienced in the Pilot site testing.  

In chapter 2, we discussed each ADF in detail. We tested two motorway ADFs, the Traffic Jam 
Motorway and the Motorway ADF. The Traffic Jam Motorway ADF could be activated on 
motorways up to 60km/h, whereas Motorway ADF could be activated on motorways up to 
130km/h. Traffic Jam Motorway ADF also requires the presence of a lead vehicle, but the 
Motorway ADF may either follow a lead vehicle or keep to below the speed limit. Both motorway 
ADF can execute a lane change. As mentioned previously, the findings on motorway ADF reported 
in this section were not separated into Traffic Jam Motorway ADF or Motorway ADF but are an 
amalgam of the findings. When Urban ADF is activated the vehicle follows the lane, executes left 
and right turns, decelerates, accelerates, and can execute lane changes within cities. The vehicle 
recognises on-coming traffic and VRUs. Finally, when Parking ADF is activated, the vehicle is 
capable of completing manoeuvring into and out of garages and driveways.  

We investigated different research questions by using the questionnaire, e.g.: Are drivers willing to 
use an ADF? What is the user acceptance of the ADF? What is the impact of ADF on driver state 
and on driver awareness? What are drivers’ expectations regarding system features? What is 
drivers’ secondary task engagement during ADF use? How do drivers respond when they are 
required to retake control? And what is the impact of ADF use on motion sickness?  

4.1 Motorway 
4.1.1 RQ-U1: Are Drivers Willing to Use an ADF? 

Table 4.1: Question administered to investigate drivers’ willingness to use an ADF. 

Questions Administered 
• I would use this system if it was in my car 

As shown in Figure 4.1, drivers were generally very positive and gave high ratings for their 
willingness to use the motorway ADF if it was in their car. Approximately 83% of professional 
drivers from the Pilot site agreed or strongly agreed with the statement, while 95% of ordinary 
drivers from the Pilot site, and 93% of ordinary drivers from the simulator studies, agreed or 
strongly agreed. No driver stated that they did not know the answer to this question. 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 131 

  

 

 

Figure 4.1: Ratings of drivers’ willingness to use an ADF for Motorway Professional Drivers, 
Motorway Ordinary Drivers – Pilot Sites and Motorway Ordinary Drivers – Simulator. 

4.1.2 RQ-U3: What Is the User Acceptance of the ADF? 

Participants’ responses to twelve questions were evaluated to understand their acceptance of the 
motorway ADF (see Table 4.2). 

Table 4.2: Sub-research questions and questions administered to understand user acceptance of 
the ADF. 

Sub-Research Questions Questions Administered 
• What is the perceived safety of the ADF? • I felt safe when driving with the system active 

• During the take-over I always felt safe 

• What is the perceived comfort of the ADF? • Driving with the system active was comfortable 
• Rating of each vehicle behaviour 

• What is the perceived usefulness of the ADF? • I think the tested system was useful/useless 
• I would recommend the system to others. 
• I would use the system during my everyday trips. 

• What is the perceived trust of the ADF? • I trust the system to drive 
• I would want to monitor the system’s 

performance 

• How does user acceptance differ between ADF 
types? (System’s Performance) 

• Sometimes the system behaved unexpectedly 
• The system worked as it should work 
• The system acted appropriately in all situations 

In terms of the perceived safety of the ADF (see Figure 4.2), most of the drivers agreed or 
strongly agreed with the statement ‘I felt safe when driving with the system active.’ 81% of 
professional drivers, 86% of ordinary drivers in the Pilot site, and 88% of ordinary drivers in 
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simulator studies were in agreement. Drivers were also asked about their perceived safety during 
take-overs. The results revealed that 64% of professional drivers from the Pilot sites agreed or 
strongly agreed that they felt safe during the take-over, whereas 88% of ordinary drivers from the 
Pilot sites agreed with this statement. This seems to show a trend whereby the ordinary drivers 
were more positive about their experience. No data was collected for this question from the 
simulator studies. 

(a) 

 
(b) 
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(c) 

 

Figure 4.2: Ratings of user acceptance of the ADF for (a) Motorway Professional Drivers (b) 
Motorway Ordinary Drivers – Pilot Sites and (c) Motorway Ordinary Drivers – Simulator. 

For perceived comfort of the ADF, most of the drivers agreed that ‘driving with the system active 
was comfortable’ (see Figure 4.3), whereby 83%, 92%, 97% were in agreement for the respective 
groups (professional driver in Pilot site studies, ordinary driver in Pilot site studies, and ordinary 
driver in simulator studies). To provide a deeper understanding of which aspects of the vehicle’s 
behaviour were more comfortable, drivers were asked to rate eight vehicle behaviours on a six-
point scale. For the professional drivers (see Figure 4.3 (a)), the majority (range 60% to 78%) rated 
most of the behaviours as comfortable or very comfortable. However, behaviour in motorway 
junction areas (with 30% feeling comfortable and very comfortable, 12% don’t know), and lane 
change behaviour (with 38% feeling comfortable and very comfortable, 43% don’t know) were not 
rated as highly in terms of comfort. For the ordinary drivers from the Pilot sites (see Figure 4.3 (b)), 
the majority (range 67% to 78%) rated most of the vehicle behaviours as comfortable or very 
comfortable. However, a much smaller number of participants felt comfortable with the behaviour in 
motorway junction areas (10% feeling comfortable or very comfortable), but this could be because 
72% said they didn’t know. Finally, for the ordinary drivers from simulators (see Figure 4.3), the 
majority (range 50% to 92%) rated vehicle behaviours as comfortable or very comfortable, but 
again not for the behaviour in motorway junction areas (with 23% feeling comfortable and very 
comfortable), where the majority (53%) said they didn’t know. Note that the large proportion of 
drivers answering ‘I don’t know’ was potentially due to them not experiencing the system at that 
particular area/manoeuvre during the drive. Overall, some of the vehicle behaviours were 
comfortable, with some having room for improvement. 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 134 

  

(a) 
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(c) 

 

Figure 4.3: Ratings of perceived comfort for each behaviour of the ADF for (a) Motorway 
Professional Drivers (b) Motorway Ordinary Drivers - Pilot Sites and (c) Motorway Ordinary Drivers 
– Simulator. 

To investigate drivers’ perceived usefulness of the system (see Figure 4.2), three questions were 
asked. We asked drivers to rate whether they agreed or not with the statement ‘I would 
recommend the system to others.’ Most of drivers agreed with this statement, with 81% of 
professional drivers in the Pilot sites, 85% ordinary drivers in the Pilot sites, and 83% ordinary 
drivers in simulator studies agreeing or strongly agreeing. Most of the drivers also agreed with the 
statement, ‘I would use the system during my everyday trips’, with 62% professional drivers in Pilot 
sites, 86% ordinary drivers in Pilot sites, and 78% ordinary drivers in simulator studies agreeing.  
Thus, a smaller proportion of professional drivers agreed with this statement compared to the other 
two groups, possibly because professional drivers are more familiar with the system’s limitations 
and the restrictions of a specific prototype. In addition, we also asked drivers to rate ‘I think the 
tested system was useful/useless.’ Findings showed that 84%, 94%, and 96% of drivers rated the 
system as useful, respectively, for each group. 

In terms of perceived trust in the motorway ADF, and as shown in Figure 4.2, most of the drivers 
agreed or strongly agreed that they trust the system to drive (72%, 86%, 92% respectively for each 
group). Interestingly, most of the professional drivers agreed or strongly agreed with the statement 
‘I would want to monitor the system’s performance,’ but only 47% (Pilot site) and 40% (simulator) 
of ordinary drivers agreed with this statement. This, once again, shows the trend that professional 
drivers may be more cautious with the system. 
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Drivers were also asked to evaluate the system’s performance. The results revealed that 48% 
(professional drivers, Pilot sites), 31% (ordinary drivers, Pilot sites), and 8% (ordinary drivers, 
simulator) agreed or strongly agreed that sometimes the system behaved unexpectedly, with data 
collected from the simulators rated more positively. 48%, 76%, and 85% of drivers from each group 
respectively agreed or strongly agreed that the system worked as it should. Again, the findings 
revealed that professional drivers who have had extensive experience with the system were less 
positive than ordinary drivers. Finally, we asked drivers to rate whether ‘the system acted 
appropriately in all situations.’ 31%, 68%, and 80% of drivers from each group agreed or strongly 
agreed with the statement, with professional drivers giving less positive ratings for the system. 

4.1.3 RQ-U5: What Is the Impact of ADF on Driver State? 

Four questions tapped into understanding drivers’ workload or state while interacting with the 
motorway ADF (see Table 4.3). 

Table 4.3: Sub-research questions and questions administered to understand driver states while 
using the ADF. 

Sub-Research Questions Questions Administered 
• What is the effect of ADF use on drivers’ level 

of stress? 
• Driving with the system was stressful 

• What is drivers’ level of fatigue while using the 
ADF? 

• Driving with the function on long journeys would 
make me tired 

• What is drivers’ workload while using the 
ADF? 

• Driving with this system was difficult 
• Driving with this system was demanding 

Most of the drivers disagreed or strongly disagreed that driving with the system was stressful. 
About 95% of ordinary drivers disagreed or strongly disagreed, with a lower percentage of 
disagreement from professional drivers (79%). Mixed results were obtained in relation to the 
statement ‘Driving with the function on long journeys would make me tired.’ For professional 
drivers from the Pilot sites, 29% agreed or strongly agreed, 18% of them were neutral, and 45% 
disagreed or strongly disagreed, suggesting that almost half of the professional drivers felt they 
might get tired when using the system.  

Similarly, for ordinary drivers from the Pilot sites, 31% of them agreed or strongly agreed, 18% 
were neutral, and 48% disagreed or strongly disagreed. On the other hand, most of the ordinary 
drivers tested in simulator studies agreed or strongly agreed with the statement (60%), 18% 
remained neutral, and 23% were in one of the disagree categories. This suggests that drivers’ 
experience of tiredness while driving in the simulator is different to the on-road experience, which 
could be due to the repetition in scenes as well as multiple testing. Most of the drivers disagreed or 
strongly disagreed that driving with the system was difficult (84% for professional drivers; 94% for 
ordinary drivers from the Pilot site; 100% for ordinary drivers from simulator studies) or demanding 
(76% for professional drivers; 88% for ordinary drivers from the Pilot site; 93% for ordinary drivers 
from simulator studies), suggesting that most drivers found the system easy to use. However, 
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findings also seem to reveal a difference between simulator and on-road testing in system 
evaluation. 

(a) 

 
(b) 
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(c) 

 
Figure 4.4: Ratings of drivers’ workload or state while interacting with the ADF for (a) Motorway 
Professional Drivers (b) Motorway Ordinary Drivers – Pilot Sites and (c) Motorway Ordinary Drivers 
– Simulator. 

4.1.4 RQU6: What Is the Impact of ADF Use on Driver Awareness? 

Two items investigated drivers’ level of awareness of their environment while using the ADF (see 
Table 4.4). 

Table 4.4: Sub-research questions and questions administered to understand the impact of ADF 
use on driver awareness. 

Research Questions Questions Administered 
• What is the effect of ADF use on driver 

attention to the road/other road users? 
• During driving with the system active, I monitored the 

surrounding environment more than in manual driving 

• What is drivers’ risk perception while 
using the ADF? 

• During driving with the system active, I was more aware of 
hazards in the surrounding environment than in manual 
driving 

Findings seem to be mixed in terms of how the “system active” affects drivers’ awareness and 
whether they monitored the surroundings more than in manual driving. For instance, most of the 
ordinary drivers from the simulator disagreed or strongly disagreed with these two statements, with 
65% and 80% respectively for each statement, suggesting that they did not feel the need to 
monitor their environment when the automated system was on, perhaps due to simulators being a 
safe and well-controlled environment, and having gotten used them to after multiple testing. 
However, in the Pilot sites, 34% of professional drivers disagreed or strongly disagreed with being 
more aware of hazards in the surroundings, with 24% agreeing or strongly agreeing. Similarly, 34% 
of professional drivers disagreed or strongly disagreed that they monitored their surroundings more 
than in manual driving, with 29% agreeing or strongly agreeing with the statement. For ordinary 
drivers from the Pilot site, 40% disagreed or strongly disagreed that they were more aware of 
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hazards in the surrounding environment, with 47% agreeing or strongly agreeing with the 
statement. On the other hand, the majority (58%) disagreed or strongly disagreed that they were 
monitoring the surroundings more than in manual driving, with only 24% agreeing or strongly 
agreeing with the statement. Overall, this suggests that there was a lot of variance in the attitudes 
of both professional and ordinary drivers at the Pilot sites. 

(a) 

 
(b) 
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(c) 

 

Figure 4.5: Ratings of drivers’ workload or state while interacting with the ADF for (a) Motorway 
Professional Drivers (b) Motorway Ordinary Drivers – Pilot Sites and (c) Motorway Ordinary Drivers 
– Simulator. 

4.1.5 RQ-U4: What Are Drivers’ Expectations Regarding System Features? 

Three items examined drivers’ overall impressions of the Motorway system (see Table 4.5). 

Table 4.5: Sub-research questions and questions administered to understand drivers’ expectations 
regarding system features. 

Sub-Research Questions Questions Administered 
• What is drivers’ overall impression of the 

system? 
• Using the system on motorways was fun 
• I would make MORE trips if I had the function in my car 
• I would select destinations further away if I had the 

function in my car 

Interestingly, most of the ordinary drivers agreed or strongly agreed that using the system on 
motorways was fun (86% for Pilot sites and 87% for simulator studies), but only 38% of 
professional drivers agreed or strongly agreed with the statement, with 35% being neutral and 26% 
in disagreement. This again could be due to the system being new to ordinary drivers, whereas 
professional drivers might have experienced the system many times and were more familiar with it. 
In addition, professional drivers also had a higher responsibility monitoring the system, whereas 
ordinary drivers could feel more at ease knowing there was a safety driver. Most drivers disagreed 
or strongly disagreed that they would make more trips if they had the function in their car (53% 
professional drivers, 52% ordinary drivers from the Pilot sites, and 60% ordinary drivers from 
simulator studies). Most professional drivers disagreed or strongly disagreed that they would select 
destinations further away if they had the function in their car (57%), whereas only 42% of ordinary 
drivers from the Pilot sites disagreed with the statement. On the other hand, most ordinary drivers 
from simulator studies agreed or strongly agreed (52%). 
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(a) 

 
(b) 

 
(c) 

 

Figure 4.6: Ratings of drivers’ overall impression while using the ADF for (a) Motorway 
Professional Drivers (b) Motorway Ordinary Drivers – Pilot Sites and (c) Motorway Ordinary Drivers 
– Simulator. 

4.1.6 RQ-U9: What Is Drivers’ Secondary Task Engagement During ADF Use? 

Two sub-questions examined drivers’ secondary task engagement during ADF use (see Table 
4.6). 
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Table 4.6: Sub-research questions and questions administered to understand what is drivers’ 
secondary task engagement during ADF use. 

Sub-Research Questions Questions Administered 
• What secondary tasks do or would drivers engage 

in during ADF use?  
• I would use the time the system was active to do 

other activities 

• What is the frequency and duration of drivers’ 
secondary task engagement during ADF use? 

• Rate how frequent drivers would engage in each 
activity while the system is active 

• None 
• Office/work tasks 
• Watching movies 
• Sleeping 
• Browsing the Internet 
• Navigation 
• Social media 
• Smartphone apps 
• Personal hygiene/cosmetics 
• Smoking 
• Calling 
• Eating or drinking 
• Interact with a passenger 
• Music, radio, audiobooks 
• Texting 

Figure 4.7 reveal that most of the ordinary drivers agreed or strongly agreed that they would use 
the time the system was active to do other activities (82% from Pilot site, 98% from simulator 
studies), but only 41% of professional drivers agreed with that statement, potentially due to being 
more familiar with the system’s limitations. 
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We also explored what type of activities drivers liked to engage in and how frequently, when the 
system was active. 

 

Figure 4.7: Ratings of drivers’ willingness to engage in a secondary task while using the ADF for 
Motorway Professional Drivers, Motorway Ordinary Drivers – Pilot Sites and Motorway Ordinary 
Drivers – Simulator. 

The top three activities that professional drivers would engage in frequently or very frequently were 
music, radio, audiobook (64%), navigation (63%), and interacting with a passenger (57%); whereas 
the three activities that they would engage in infrequently, very infrequently, or never were sleeping 
(83%), watching movies (74%), and office/work tasks (68%). For ordinary drivers tested at the Pilot 
site, the top three activities that they would engage in frequently or very frequently were interacting 
with a passenger (97%), music, radio, audiobook (94%), and smartphone apps (70%). The three 
activities that they would engage in very infrequently, infrequently or never were smoking (92%), 
personal hygiene/cosmetics (82%), and sleeping (68%). For ordinary drivers tested in the 
simulator, the top three activities that they would engage in frequently or very frequently were 
music, radio, audiobook (93%), interacting with a passenger (92%), and texting (78%), whereas 
the three activities that they would engage in very infrequently, infrequently, or never were smoking 
(93%), personal hygiene/cosmetics (83%), and sleeping (55%). It is also worth noting that drivers 
were told that sleeping was not allowed when the system was active. These results show that there 
was a great degree of similarity across drivers as to the types of activities they would like to 
engage in while automation is on, with interaction and listening activities selected more often than 
activities requiring looking away from the road.  
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(a) 

 
(b) 
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(c) 

 

Figure 4.8: Ratings of drivers’ willingness to engage in different types of secondary task while 
using the ADF for (a) Motorway Professional Drivers (b) Motorway Ordinary Drivers – Pilot Sites 
and (c) Motorway Ordinary Drivers – Simulator. 

4.1.7 RQ-U10 - How Do Drivers Respond When They Are Required to Retake Control? 

There were six questions examining drivers’ responses to planned take-over requests. 

Table 4.7: Sub-research questions and questions administered to understand how drivers respond 
when they are required to retake control.  

Sub-Research Questions Questions Administered 
• How do drivers respond when they are required 

to retake control in planned take-overs? 
• It was obvious to me why take-over requests 

occurred 
• When the system asks me to retake control, I am 

warned in an appropriate way 
• When the system asks me to retake control, I am 

warned with sufficient time to do so safely 
• How dangerous was the previous take-over 

situation? 
• I would have liked more information about why a 

take-over request was triggered 
• I would like to know more about the system limits. 

Most professional drivers agreed or strongly agreed that it was obvious why take-over requests 
occurred (55%). The proportion was higher for ordinary drivers from the Pilot sites (69%) and was 
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even higher again for ordinary drivers tested in simulators (91%) (see Figure 4.9). This could be 
due to simulators being a much more controlled environment than Pilot sites. Most of professional 
drivers agreed or strongly agreed that they were warned in an appropriate way when they were 
asked to retake control by the system (64%), and, once again, the proportion was higher for 
ordinary drivers from the Pilot sites (89%) and even higher for the ordinary drivers in simulator 
studies (94%). 55% of the professional drivers agreed or strongly agreed that they were warned 
with sufficient time to safely retake control (55%), and again ordinary drivers from the Pilot sites 
seemed to be more positive, with 86% of them agreeing with this statement. Most of professional 
drivers would have liked more information on why a take-over request was triggered (52%), but 
33% of ordinary drivers from the Pilot sites and 41% of ordinary drivers from the simulator agreed 
or strongly agreed with the statement. Most of the drivers wanted to know more about the 
system limits: 70% of professional drivers, 70% of ordinary drivers from the Pilot site, and 100% 
of ordinary drivers from the simulator studies agreed or strongly agreed with this statement. 

(a) 
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(b) 

 
(c) 

 

Figure 4.9: Ratings of drivers’ experience of take-over control while using the ADF for (a) Motorway 
Professional Drivers (b) Motorway Ordinary Drivers –  Pilot Sites and (c) Motorway Ordinary 
Drivers – Simulator. 

In more than 60% of take-over situations it took less than 4 seconds before drivers reacted to the 
take-over requests and deactivate the function. The reaction time in 99% of situations was under 
10 seconds (see Figure 4.10). 
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Figure 4.10: Time until the ADF is deactivated after a take-over request. 

The impact of take-over requests on driving behaviour and the transition of control from the vehicle 
to the driver is assessed with the take-over-controllability rating (TOC-rating). The evaluated 
driving sequence starts with the beginning of the take-over request and ends after the action 
required to solve the situation leading to the take-over request is terminated. 

The results are based on two Pilot sites where non-professional drivers reacted to take-over 
requests. Take-over requests could happen in three different circumstances: 

● Take-over request during stable lane bound-driving, no specific actions need to be taken by the 
driver after the transition to manual driving. 

● Take-over request in a situation where two new lanes merge from the right. The driver can 
mostly stay in the lane but needs to react to other traffic merging from the right. 

● Take-over request before an exit that needs to be taken. The driver needs to change to the exit 
lane after taking back control. 

As can be seen in Figure 4.11, in all evaluated situations the take-over was solved safely and 
mostly also without driving errors. In the situation where no specific action needed to be taken, 

nearly 100% of the situations were solved perfectly or with only minor imprecision (rating ≤3). Here, 
the main weakness was due to visible emotions by the driver that indicated some experience of 

stress as well as rather small distances laterally. In the situation with the two merging lanes, 96% 
of situations were rated as being perfect transitions with only minor imprecisions. In this case, the 
most frequent error type was again small lateral distances. For take-over before the exit, 15% of 
take-overs were rated as being perfect with minor imprecision, the rest is rated as being safe but 

with errors. The most frequent error types were missing or too late use of the indicator during 85% 
of all take-overs, small lateral distances, and rather late initiation of the lane change to the exit 
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lane. 

 

Figure 4.11: Results of TOC-rating in the three different take-over situations. 

Results indicate that the overall evaluation of the take-over reaction clearly depends on the 
complexity of the situation in which the take-over request occurs. In driving environments where 
the driver can stay in their lane after the transition of control and where no time-critical actions 
need to be taken, the transition is in more than 99% of analysed situations smooth and without 
errors (TOC-rating≤3). In situations where specific immediate actions are required, driving errors 
can occur. Here, it needs to be considered that these are situations where errors occur also in 
manual driving. For instance, it happens rather frequently that drivers change to an exit lane 
without using the indicator. For a final evaluation on whether driving errors are more frequent 
immediately after a take-over request, a comparison is needed of the frequency of errors and the 
error types between purely manual driving and driving after take-over requests. 

4.1.8 RQ-U7: What Is the Impact of ADF Use on Motion Sickness? 

Table 4.8: Questions administered to understand the impact of ADF use on motion sickness. 

Questions Administered 
• Did you experience motion sickness during your test drive with the function active? 
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100% of the professional drivers answered ‘No’ to the question. 96% of the ordinary drivers from 
the Pilot sites answered ‘No’ and 4% answered ‘Yes’. No data was collected from simulator 
studies. 

4.1.9 Applications of regression models to motorway ADF user acceptance 

Hierarchical Regression Models were conducted to answer two additional RQs: 

(1) Which of the User & Acceptance factors predict willingness to use the motorway ADF 
system, and 

(2) Given that professional drivers seem to be less positive in a lot of the ratings compared to 
ordinary drivers, we also wanted to know whether system familiarity and driver type predict 
willingness to use the system. 

In the following models, we have only included the data collected from Pilot sites (58 professional 
drivers and 236 ordinary drivers), and not from the driving simulators, because the experience in 
the simulator could be very different. Hierarchical Regression Models (also known as sequential 
regression) were used because they allowed the researchers to enter variables in steps or blocks 
in a predetermined order. This enables us to show if variables of interest (i.e., driver type and 
system familiarity) explain a statistically significant amount of variance in the Dependent Variable 
(DV) (i.e., willingness to use) after accounting for all other variables (i.e. User & Acceptance 
factors), and handling the unbalanced number of participants that was not normally distributed. 

Step 1 Independent Variables (see Table 4.9): Factor Analysis grouped items which drivers 
answered in a similar manner, creating four main factors within the User & Acceptance items. Van 
Der Laan’s scale is a validated scale that measures acceptance, which consisted of Usefulness 
and Satisfying constructs. Van Der Laan’s Usefulness and Satisfying scale were added as the fifth 
and sixth factors. Table 4.9 shows the items loading onto each of the six factors, along with the 
reliability values for each of the scales. The mean of each of these factors was computed and 
entered into the first step of the hierarchical regression analysis.  

Table 4.9: Items grouped by Factor Analysis and their respective Cronbach’s Alpha. 

FACTOR 1: Cronbach’s 
Alpha 0.914 

Workload/Emotion & Expectation 

TJM33_33bb Sometimes the system behaved unexpectedly 

TJM33_33m The system acted appropriately in all situations 

TJM33_33k The system worked as it should work 

TJM33_33ii Driving with this system was demanding 

TJM33_33jj Driving with the system was stressful 

TJM33_33c I felt safe when driving with the system active 

TJM33_33u Using the system on motorway was fun 

TJM33_33q Driving with the system active was comfortable 
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TJM33_33o I trust the system to drive 

TJM33_33hh Driving with this system was difficult 

FACTOR 2: Cronbach’s Alpha 
0.771 

Take-over Experience 

TJM33_33beta When the system asks me to retake control, I am warned in an 
appropriate way 

TJM33_33alpha When the system asks me to retake control, I am warned with 
sufficient time to do so safely 

TJM33_33z During the take-over I always felt safe 

TJM39_SQ0011 How dangerous was the previous take-over situation? 

FACTOR 3: Cronbach’s Alpha 
0.51 

System Information 

TJM33_33y I would have liked more information about why a take-over request 
was triggered 

TJM40a40f_40d I would like to know more about the system limits 

FACTOR 4: Cronbach’s Alpha 
0.5 

System Monitoring 

TJM33_33ll I would want to monitor the system’s performance 

TJM33_33n I would use the time the system was active to do other activities 

FACTOR 5: Cronbach’s Alpha 
0.681 

Van Der Laan’s Usefulness 

TJM31_SQ001 Useful-Useless 

TJM31_SQ003 Bad-Good 

TJM31_SQ005 Effective-Superfluous 

TJM31_SQ007 Assisting-Worthless 

TJM31_SQ009 Raising alertness-Sleep-inducing 

FACTOR 6: Cronbach’s Alpha 
0.855 

Van Der Laan’s Satisfying 

TJM31_SQ002 Pleasant-Unpleasant 

TJM31_SQ004 Nice-Annoying 

TJM31_SQ006 Irritating-Likeable 

TJM31_SQ008 Undesirable-Desirable 

Step 2 Independent Variables: In the second step of the Hierarchical Regression, two variables 
were entered to measure drivers’ level of system experience. These were System Familiarity, 
measured through the item ‘Today, you will be operating with the motorway system, how familiar 
are you with this type of systems you will be using today?’ rated from 1 = highly familiar to 5 = 
highly unfamiliar; and Driver Type (58 Professional Drivers vs 236 Ordinary Drivers). 
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Figure 4.12: Professional and Ordinary Drivers’ familiarity with the system. 

Figure 4.12 shows the system familiarity of professional drivers and ordinary drivers. It is clear that 
professional drivers tend to have higher familiarity with the system, whereas ordinary drivers tend 
to be more unfamiliar with it. Therefore, familiarity was deemed to be a proxy measure of system 
experience and was included in a separate step to driver type. 

A Spearman’s correlation was conducted for the factors included in the regression to check for 
multicollinearity. There was no strong correlation between any of the factors (Coefficient < .07), 
apart from Van Der Laan’s Usefulness & Satisfying (Coefficient = 0.721), which both tap into the 
underlying construct of ‘Acceptance’. 

The dependent variable is the mean of three items measuring Willingness to Use (Cronbach’s 
alpha = 0.845): 

● I would use this system if it was in my car 

● I would buy the system 

● I would use the system during my everyday trips 

Results 

● Model 1: Willingness to Use = Six User & Acceptance Factors (R2 = 0.63) 

● Model 2: Willingness to Use = Six User & Acceptance Factors + System Familiarity (R2 = 0.635) 

● Model 2: Willingness to Use = Six User & Acceptance Factors + Driver Type (R2 = 0.634) 

The results of the regression show that the R2 values for Model 1, 2, and 3, were 0.63, 0.635, and 
0.634, respectively. Table 4.10 below shows the coefficients and p values of each factor in each 
model. 
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Table 4.10: Coefficients and p value of each factor in Regression Model 1, 2, and 3 (*p < .05, ** p< 
.01, ***p < .001). 

Predictor Variables Model 1 Model 2 Model 3 
Workload/Emotion & Expectation 0.334**           0.338** 0.335** 

Take-over Experience 0.052 0.063 0.062 

System Information 0.221*** 0.224*** 0.220*** 

System Monitoring 0.165* 0.167* 0.182* 

Van Der Laan’s Usefulness 0.254* 0.250* 0.252* 

Van Der Laan’s Satisfying 0.167 0.176 0.172 

System Familiarity NA 0.070 NA 

Driver Type NA NA 0.064 

R2 0.63 0.635 0.634 

R2 change 0.63 0.005 0.004 

The results revealed that Workload/Emotion & Expectation, System Information, System 
Monitoring, and Van Der Laan’s Usefulness were significant predictors of willingness to use the 
motorway system. This finding was consistent across three models, whereby the more positive 
they felt in terms of how the system impacted their workload/emotion and expectation, the higher 
was their willingness to use. Drivers who reported wanting to know more about the system also 
had a higher willingness to use. Drivers who would like to engage in secondary tasks and reported 
being less likely to monitor the system also revealed a higher willingness to use. Finally, the higher 
the usefulness rating, the higher the willingness to use. In model 2, we did not find system 
familiarity as a significant predictor of willingness to use, nor did having it as an additional factor 
significantly improve the variances explained, although R2 did increase slightly, by 0.005. Similarly, 
we did not find driver type as a significant predictor of willingness to use, nor did having it as an 
additional factor significantly improve the variances explained (R2 change = 0.004). 

4.1.10 Evaluation of Pilot data utilising video coding 

To answer some RQs in more detail, video data recorded during the drive was annotated and 
analysed. This analysis only includes a subset of the ordinary drivers (N=30) who took part in a 
Wizard-of-Oz study on public roads comparable to motorways. The ADF was mimicked by a 
hidden second driver, while the participant was under the impression that the vehicle was 
automated. The video annotations were done based on a codebook with RQ specific features and 
validated by double annotations to confirm high inter-rater reliability. 

4.1.10.1 Reported Trust Related to Behaviour After Hand Over (related to RQ-U3) 

To investigate how the trust rated in the pilot-site questionnaire reflects in the driver behaviour, 
several features were extracted from videos after take-over by the ADF. These features were first 
glance to the HMI, activation of ADF, taking hands off the steering wheel, taking feet off the pedals 
in a resting position, and starting a secondary task. There were six phases of ADF available during 
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a drive and the drivers were encouraged to use the system when available. The availability of the 
ADF is conveyed by visual information on the HMI (display) and an acoustic sound. 

 

Figure 4.13: Timing of annotated drivers’ reactions in the hand over process after ADF becomes 
available. 

The results show that drivers react very fast once the ADF becomes available, looking at the HMI 
(m=0.5 s) and activating the system on average after only 1.5 s. This is followed by taking the 
hands off the steering wheel and placing the feet in a resting position (off the pedals), which occurs 
on average 5.4 s and 6.3 s after the system becomes available, respectively. All these measures 
showed no significant difference across the six phases where the system was available. However, 
the start of a secondary task (see Figure 4.13) is spread out, and the timing decreases over the 
first three ADF phases. Also, not all drivers engage in a secondary task within the 30 seconds after 
ADF activation. 

Besides the hand over process and timing, correlations with the driver’s trust rating in the 
questionnaire were investigated. Among the 30 drivers included in this analysis, only two disagreed 
with trusting the system and one answered with “neutral”. Interestingly, one of the disagreeing 
drivers did not engage in a secondary task. While the first four measures of occurrence were very 
homogeneous across all drivers, the start timing of secondary task engagement showed a 
correlation with the trust rating, meaning that the more they trusted the system, the earlier they 
engaged in a secondary task when the ADF became available. 

4.1.10.2 Drivers’ Visual Attention Before and After a Take-Over Request (RQ-U6) 

To understand drivers’ visual attention before and after a take-over request (TOR), drivers glance 
locations were coded 30 s before and 30 s after the TOR. The defined areas of interest (i.e., 
glance locations) were: towards the forward roadway or towards any other off-road area (e.g., 
secondary task or the instrument cluster). To capture drivers’ attention to the forward road, the 
percent time on forward road (see ISO15007-2) for each driver within different time bins (e.g., 30 s 
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before the TOR) was computed. For comparison, the percent time on forward road was also 
computed for a corresponding time bin using the manual baseline drive data. 

 

Figure 4.14: Percentage of time that drivers’ gaze was directed towards the forward roadway. 

Figure 4.14 shows the percentage of time that drivers’ gaze was directed towards the forward 
roadway, within four time intervals, as a function of time anchored at the TOR in L3. Based on how 
the visual attention to the forward road changed over time, four different intervals were identified 
during the 30 s before and after the TOR. Interval 1 captures the visual attention towards the 
forward roadway during L3 automation leading up to a TOR. Interval 2 captures the 6 s after the 
TOR when the drivers deactivate automation. 6 s was chosen because it resembled the time the 
drivers were given to deactivate automation. While Interval 4 represents the 15-30 s away from the 
TOR in which the glance behaviour to the forward roadway has stabilised, Interval 3 represents the 
transition from Interval 2 to 4. 

A Wilcoxon Signed-Rank Test indicated that the percentage time to the forward road was 
significantly lower (Mdn = 41%) during L3 automation (Interval 1 in Figure 4.14) compared to the 
manual 30 s baseline (Mdn = 75%), Z = −3.975, p < 0.001. Instead of looking at the forward 
roadway, drivers during L3 automation spent time looking towards secondary task devices (e.g., 
personal mobile phone) or towards the tablet mounted on top of the centre stack. Shortly after the 
TOR a noticeable decrease in attention towards the forward roadway can be seen in Figure 4.14 
(Interval 2). Instead of looking forward the drivers, in response to the TOR, looked towards the 
instrument cluster. Then, the visual attention to the road gradually increases again to reach a 
similar level of attention forward as the manual baseline in Interval 4. A Wilcoxon Signed-Rank 
Test indicated that the percentage of time on road in Interval 4 (Mdn = 71%) was not statistically 
significantly different from the 15 s manual baseline, (Mdn = 71%), Z = −2.67, p = 0.79. A more 
detailed overview of the results of the glance analysis after take-overs is given by Pipkorn, Dozza 
and Tivesten, (2021). 
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4.1.10.3 Secondary Task Engagement Frequency and Duration (RQ-U9)  

During the drive with the ADF, the drivers were allowed to engage in secondary tasks. The drivers 
had two preferences: 1) using their phone (annotated as texting phone or talking phone) or 2) 
interacting with a tablet mounted on the centre stack (annotated as Interact with centre stack). Only 
the four longer phases of automation (5-7 minutes) were used for analysis. Figure 4.15 shows the 
number of engagements across all drivers during the different automation phases. When an action 
is stopped and restarted it does count again. The feature Talking/interaction with the passenger 
refers to the test leader who was sitting in the passenger seat. When they are getting their phone 
out, this is considered Reaching for object which is a brief activity. 

 

Figure 4.15: Number of engagements in different secondary tasks during 4 different phases of 
automated driving over all drivers. 

 

Figure 4.16: Duration of engagement in Texting and Interact with centre stack (using the mounted 
tablet) across the 4 different phases of automated driving. 
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The number of engagements is relatively stable over the different phases and indicates that the 
drivers are comfortable engaging in different secondary tasks. In terms of duration, Figure 4.16 
shows the proportion of time during automation spent on Texting and Interact with centre stack. 
These two activities were observable for stable time periods and severely drawing attention 
(especially visual) away from the driving. The amount of time using a phone as well as interacting 
with a tablet increases over the first three phases on average, indicating that more drivers engage 
in activities in later exposures. The spread is quite large, implying that there are both drivers 
engaging not at all or for brief periods and drivers engaging for long parts of the automation 
duration in one of the two main secondary tasks. Since both are mutually exclusive, drivers could 
switch between them during a phase of automation. There seems to be no preference between the 
two activities, as the durations are comparable. The largest proportion is reached in AD phase 3, 
with 65% time of driving in automation spent with texting on average. 

4.1.10.4 Driver Response After Take-over Request (RQ-U10) 

The driver response process towards TORs was investigated in detail using video annotations and 
compared with the results from several supplementary studies (Wizard-of-Oz studies on a test 
track). These results are reported in detail in D7.2 – L3/L4 Long-term study About user 
experiences (Metz et al., 2021). All drivers showed quick responses after being prompted to take 
back control by looking at the HMI, putting the hands on the wheel, glancing at the forward road, 
deactivating ADF and putting the feet on the pedals. The average take-over time was within 4 
seconds after the TOR, and all managed to regain control within 10 seconds. Two drivers needed 
a second attempt at deactivation, delaying their take-over time. 

4.1.11 Summary Findings for Motorway 

To evaluate the L3Pilot Motorway system, professional and ordinary drivers were tested at different 
Pilot sites and in a driving simulator. Generally, drivers were positive about the system, giving high 
ratings for willingness to use, perceived trust, perceived safety, and system usefulness. Overall, 
professional drivers were less positive in their ratings (i.e., willingness to use, perceived safety, 
take-over perceived safety, perceived usefulness, trust, fun) than ordinary drivers. Although all 
drivers believed that system performance and the expected behaviour of the system could be 
further improved, the margin for improvement was higher for professional drivers. Most of the 
drivers did not believe that driving with the system was stressful, difficult, or demanding. However, 
some thought that using the systems on a long journey would make them tired. This finding seems 
to be higher for drivers who took part in the simulator study with repetitive testing, which could 
potentially be due to simulator fatigue. If given the opportunity, most of the ordinary drivers would 
engage in a secondary task while the system is active, but professional drivers were less inclined 
to do so. They were also in favour of engaging in secondary tasks which are allowed (i.e., music, 
audio books, talking to passengers). Most participants agreed that their experience of driving with 
the system was comfortable, with no reports of motion sickness during the drive. However, future 
studies should focus on longer engagement in secondary tasks and driving that is more demanding 
with more lateral and longitudinal movements and environmental change. Vehicle behaviours such 
as distance kept to other vehicles, driving in curves, braking, acceleration, and smoothness were 
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all rated as comfortable. However, vehicle behaviours in motorway junction areas and during lane 
changes were deemed to be less comfortable. It is possible that more interactions were required in 
these situations, possibly leading to the reduced comfort ratings. Future studies should focus on 
how the system should perform to meet drivers’ expectations, and on understanding how the 
system could improve comfort and acceptance. Most drivers felt safe taking over control from the 
system, although once again, ordinary drivers provided higher ratings than professional ones. 

Overall, professional drivers were less positive than ordinary drivers when evaluating the system, 
potentially due to system familiarity. However, our regression analysis shows that driver type and 
system familiarity did not predict willingness to use, suggesting that this difference does not have a 
significant impact. Willingness to use was predicted by drivers’ workload/emotion, system 
expectation, system information, system monitoring, and Van Der Laan’s Usefulness scale. The 
findings revealed that the more positive drivers were in terms of workload/emotion, system 
expectation, and usefulness, the higher their willingness to use. Similarly, the more they wanted 
system information and the more willing they were to engage in a secondary task, the higher their 
willingness to use the motorway ADF. 

It is worth noting that these findings were based on the data collected via different pilots with 
different study designs. Therefore, findings should be used as a guide to provide the overall 
impressions of users’ evaluation. Pilots were also conducted with the presence of safety drivers, 
whose role was to deal with any critical situations that arose. This could overestimate users’ 
positive experiences. With continued development and maturation of the system, more studies 
should be conducted in the future to investigate users’ experience, as it predicts willingness to use. 

4.2 Urban 
The data from the urban ADF was analysed in a similar manner to the Motorway ADF. Because 
there were only 15 professional drivers who used the urban ADF, their responses were 
amalgamated with those of ordinary drivers for the analysis presented in this section. 

4.2.1 RQU1 – Are Drivers Willing to Use an ADF? 

In order to understand whether or not drivers were willing to use the urban ADF, responses to the 
question “I would use this system if it was in my car” were collated.  

Table 4.11: Question administered to investigate drivers’ willingness to use an ADF. 

Questions Administered 
● I would use this system if it was in my car 

A majority of participants agreed or strongly agreed that they would use the system if it was in 
their car (76%), although the proportion was generally lower than for the motorway system. 
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Figure 4.17: Ratings of drivers’ willingness to use an ADF. 

 

4.2.2 RQU3 - What Is the User Acceptance of the ADF? 

Participants responses to twelve questions were evaluated to understand their acceptance of the 
Urban ADF (see Table 4.12) 

Table 4.12: Sub-research questions and questions administered to understand user accept ance of 
the ADF. 

Sub-Research Questions Questions Administered 
● What is the perceived safety of the ADF? ● I felt safe when driving with the 

system active 

● What is the perceived comfort of the ADF? ● Driving with the system active was 
comfortable 

● Rating of each vehicle behaviour 

● What is the perceived usefulness of the ADF? ● I think the tested system was 
Useful/useless 

● I would recommend the system to 
others 

● I would use the system during my 
everyday trips 

● What is the perceived trust of the ADF? ● I trust the system to drive 
● I would want to monitor the system’s 

performance 

● How does user acceptance differ between ADF types? 
(System’s Performance) 

● Sometimes the system behaved 
unexpectedly 

● The system worked as it should work 
● The system acted appropriately in all 

situations 

In terms of the perceived safety of the Urban ADF (see Figure 4.18), the majority (79%) of 
participants agreed or strongly agreed with the statement ‘I felt safe when driving with the system 
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active’. 81% of the participants agreed or strongly agreed that driving with the system active was 
comfortable. The figure below (Figure 4.19) shows that a majority of the participants felt very 
comfortable or comfortable with all aspects of the vehicle behaviour. 65% of the participants rated 
that they would recommend the system to others and 69% that they would use the system 
during their everyday trips. 66% trusted the system to drive, but 66% would want to monitor the 
system’s performance. 49% of the participants agreed or strongly agreed that sometimes the 
system behaved unexpectedly, with 62% rating that the system worked as it should work. 
Finally, 58% agreed or strongly agreed that the system acted appropriately in all situations. 
These results show that, on the whole, user acceptance of the urban system was quite high. 

 

Figure 4.18: Ratings of user acceptance of the ADF. 

 

Figure 4.19: Ratings of perceived comfort for each behaviour of the ADF. 
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4.2.3 RQU5 - What Is the impact of ADF on driver state? 

Four questions tapped into understanding drivers’ workload or state while interacting with the 
urban ADF (see Table 4.13). 

Table 4.13: Sub-research questions and questions administered to understand driver states while 
using the ADF. 

Sub-Research Questions Questions Administered 
● What is the effect of ADF use on drivers’ level 

of stress? 
● Driving with the system was stressful 

● What is drivers’ level of fatigue while using the 
ADF? 

● Driving with the function on long journeys would 
make me tired 

● What is drivers’ workload while using the 
ADF? 

● Driving with this system was difficult 
● Driving with this system was demanding 

Most of the urban participants disagreed or strongly disagreed that driving with the system was 
demanding (78%), difficult (81%) and stressful (71%), indicating that the urban system was 
deemed to be relatively easy to use. About 43% of them agreed that driving with the function on 
long journeys would make them tired, with 33% disagreeing, suggesting that there was individual 
variance in how tiring the system was deemed to be. 

 

Figure 4.20: Ratings of drivers’ workload or state while interacting with the ADF. 

4.2.4 RQU6 - What Is the Impact of ADF Use on Driver Awareness? 

Two questions investigated drivers’ awareness of their environment when using the urban ADF. 

Table 4.14: Sub-research questions and questions administered to understand the impact of ADF 
use on driver awareness. 

Research Questions Questions Administered 
● What is the effect of ADF use on driver 

attention to the road/other road users? 
● During driving with the system active, I monitored the 

surrounding environment more than in manual driving 
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Research Questions Questions Administered 
● What is drivers’ risk perception while 

using the ADF? 
● During driving with the system active, I was more aware of 

hazards in the surrounding environment than in manual 
driving 

Of the urban participants, 28% agreed or strongly agreed that they were more aware of the 
surrounding hazards, but 48% disagreed or strongly disagreed. A majority of the urban 
participants disagreed or strongly disagreed that they monitored the surroundings more than in 
manual driving (62%), with 19% of them agreeing or strongly agreeing with the statement. Thus it 
appears that most of participants (i.e. as passengers) did not feel a need to monitor their 
environment closely when the urban ADF was engaged. 

 

Figure 4.21: Ratings of drivers’ level of awareness of their environment while using the ADF. 

4.2.5 RQU4 - What Are Drivers’ Expectations Regarding System Features? 

Two items investigated drivers’ expectations about their travel plans with the urban ADF. 

Table 4.15: Sub-research questions and questions administered to understand drivers’ expectation 
regarding system features. 

Sub-Research Questions Questions Administered 
● What is drivers’ overall impression of the 

system? 
● I would make MORE trips if I had the function in my car 
● I would select destinations further away if I had the 

function in my car 

About 44% of the urban participants agreed or strongly agreed that they would select destinations 
further away if they had the function in their car, with 28% disagreeing or strongly disagreeing with 
this statement. In addition, 33% of the urban participants agreed or strongly agreed that they would 
make more trips if they had the function in their car, but a larger proportion disagreed or strongly 
disagreed (44%). This variance suggests that the urban ADF may not have a great impact on 
travel or trip decisions.  
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Figure 4.22: Ratings of drivers’ overall impression while using the ADF. 

4.2.6 RQU9 - What Is Drivers’ Secondary Task Engagement During ADF Use? 

Two sub-questions addressed drivers’ secondary task engagement when the urban ADF was on.  

Table 4.16: Sub-research questions and questions administered to understand drivers’ secondary 
task engagement during ADF use. 

Sub-Research Questions Questions Administered 
● What secondary tasks do or would drivers engage 

in during ADF use?  
● I would use the time the system was active to do 

other activities 

● What is the frequency and duration of drivers’ 
secondary task engagement during ADF use? 

● Rate how frequent drivers would engage in each 
activity while the system is active 

● None 
● Office/work tasks 
● Watching movies 
● Sleeping 
● Browsing the Internet 
● Navigation 
● Social media 
● Smartphone apps 
● Personal hygiene/cosmetics 
● Smoking 
● Calling 
● Eating or drinking 
● Interact with a passenger 
● Music, radio, audiobooks 
● Texting 

A small majority of urban participants agreed or strongly agreed that they would engage in a 
secondary task when the system was active (56%), with 26% disagreeing or strongly disagreeing. 
The top three activities that urban participants would engage in very frequently or frequently were 
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music, radio, audiobook (91%), interacting with a passenger (87%), and calling (65%); whereas the 
three activities that they would engage in very infrequently, infrequently or never, were personal 
hygiene/cosmetics (25%), watching movies (23%), and smartphone apps (22%). Similar to the 
motorway ADF, it seems that participants were most comfortable engaging in listening tasks or 
tasks which would not require them to look away from the road.  

 

Figure 4.23: Ratings of drivers’ willingness to engage in a secondary task while using the ADF. 

 

Figure 4.24: Ratings of drivers’ willingness to engage in different types of secondary task while 
using the ADF. 
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4.2.7 RQU7 – What Is the Impact of ADF Use on Motion Sickness? 

Table 4.17: Questions administered to understand the impact of ADF use on motion sickness. 

Questions Administered 
● Did you experience motion sickness during your test drive with the function active? 

 

Of the 175 participants, 87% reported ‘No’ motion sickness during the test drive with the function 
active, with 3% responding ‘Yes’. Thus, it appears that the urban ADF did not cause any feelings of 
illness for a majority of participants. 

4.2.8 Applications of regressions models to urban user acceptance 

Similar to the Motorway ADF data, Hierarchical Regression Models were conducted to answer two 
additional RQs: 

(1) Which of the User & Acceptance factors predict willingness to use the urban ADF system, 
and 

(2) Whether system familiarity predicts willingness to use the system. 

In the following models, we have included data from 144 participants in the Pilot sites studies. As 
with the previous analysis, the hierarchical regression models enable us to show if variables of 
interest (i.e., system familiarity) explain a statistically significant amount of variance in the 
Dependent Variable (DV) (i.e., willingness to use) after accounting for all other variables (i.e., User 
& Acceptance factors). 

Step 1 Independent Variables (see Table 4.18): Due to the lesser number of data items collected, 
two main factors were grouped in the same way as the Motorway ADF analysis, and Van Der 
Laan’s Usefulness and Satisfying scale were added as the third and fourth factors. 

Table 4.18: Items grouped by Factor Analysis and their respective Cronbach’s Alpha. 

FACTOR 1: Cronbach’s Alpha 0.887 Workload/Emotion & Expectation 
U33_33m The system acted appropriately in all situations 

U33_33k The system worked as it should work 

U33_33bb Sometimes the system behaved unexpectedly 

U33_33q Driving with the system active was comfortable 

U33_33o I trust the system to drive 

U33_33hh Driving with this system was difficult 

U33_33ii Driving with this system was demanding 

U33_33jj Driving with the system was stressful 

U33_33c I felt safe when driving with the system active 
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FACTOR 2: Cronbach’s Alpha 0.485 System Monitoring 

U33_33ll I would want to monitor the system’s performance 

U33_33n I would use the time the system was active to do other activities 

FACTOR 3: Cronbach’s Alpha 0.78 Van Der Laan’s Usefulness 

TJM31_SQ001 Useful-Useless 

TJM31_SQ003 Bad-Good 

TJM31_SQ005 Effective-Superfluous 

TJM31_SQ007 Assisting-Worthless 

TJM31_SQ009 Raising alertness-Sleep-inducing 

FACTOR 4: Cronbach’s Alpha 0.839 Van Der Laan’s Satisfying 

TJM31_SQ002 Pleasant-Unpleasant 

TJM31_SQ004 Nice-Annoying 

TJM31_SQ006 Irritating-Likeable 

TJM31_SQ008 Undesirable-Desirable 

Step 2 Independent Variables: In the second step we included System Familiarity as an 
additional item to understand whether knowledge of the system had an impact on willingness to 
use, above that of the other system experience variables. We asked drivers ‘Today, you will be 
operating with the motorway system. How familiar are you with this type of systems you will be 
using today? 1 = Highly familiar; 5 = Highly unfamiliar; 6 = Don’t know (removed from analysis). 
Figure 4.25 shows the system familiarity of the urban participants. 

 

Figure 4.25: Participants’ familiarity of the system. 
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Prior to running the regression analysis, a Spearman correlation was conducted for all six factors 
to check for multicollinearity. There was no strong correlation between any of the factors 
(Coefficient < .07), apart from Van Der Laan’s Usefulness & Satisfying scale (Coefficient = 0.819), 
both of which tap into the underlying construct of ‘Acceptance’. 

The dependent variable, Willingness to Use Scale (Cronbach’s alpha = 0.909), was calculated as 
the mean of the following three items: 

● I would use this system if it was in my car 

● I would buy the system 

● I would use the system during my everyday trips 

Results 

● Model 1: Willingness to Use = Six User & Acceptance Factors (R2 = 0.604) 

● Model 2: Willingness to Use = Six User & Acceptance Factors + System Familiarity (R2 = 0.625) 

The results of the regression show that the R2 values for Model 1 and Model 2 were 0.604 and 
0.625, with Model 2 explaining significantly more variance than model 1. Table 4.19 below shows 
the coefficients and p values of each factor in each model. 

Table 4.19: Coefficients and p value of each factor in Regression Model 1 and 2 (*p < .05, ** p < 
.01, ***p < .001). 

Predictor Variables Model 1 Model 2 
Workload/Emotion & Expectation 0.147             0.175* 

System Monitoring 0.337*** 0.306*** 

Van Der Laan’s Usefulness 0.344*** 0.341*** 

Van Der Laan’s Satisfying 0.148 0.163 

System Familiarity NA 0.149** 

R2 0.604 0.625 

R2 change 0.604 0.021*      

The results revealed that Workload/Emotion & Expectation, System Monitoring and Van Der 
Laan’s Usefulness were significant predictors of willingness to use the urban system. The more 
positively participants felt that the system impacted their workload/emotion and expectation, the 
higher their willingness was to use the system. Drivers who would like to engage in secondary 
tasks and reported that they were less likely to monitor the system also revealed a higher 
willingness to use. Finally, the higher the usefulness rating, the higher their willingness to use. In 
model 2, system familiarity was also a significant predictor of willingness to use, increasing the 
variance explained by 2.1%. 
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4.2.9 Summary of Findings for Urban ADF 

To evaluate our L3Pilot Urban system, participants (mainly passengers) were tested at different 
Pilot sites. Similar to the findings for the Motorway ADF, participants were generally positive in their 
ratings of the system (i.e., willingness to use, perceived safety, usefulness, and trust), but with 
some margin for improvement for system performance and system expectation. Although 
participants seem to be quite positive in general, the ratings were not as high as the evaluation of 
the Motorway system. Most of the participants did not find the system demanding, difficult or 
stressful to use, but there seems to be individual variance on how tiring participants found the 
system to be.  

Most Urban participants claimed that they monitored the urban system and surrounding 
environment more than in manual driving. However, this could potentially be due to participants 
being instructed to monitor their surroundings as they would if they were driving themselves. 
Slightly more than half of the participants would engage in a secondary task, which was less than 
the ordinary drivers on the motorway but more than professional drivers on the motorway.  

Most of the participants also felt comfortable with the system and reported almost no motion 
sickness. However, there were a few behaviours that the system could improve on to maximise 
comfort, such as the distance kept to pedestrians and cyclists when overtaking, and turning 
behaviour at intersections and curves. Finally, regression results show that unlike the motorway 
evaluation, system familiarity predicted participants’ willingness to use the Urban system. The 
more familiar they were with the system, the higher was their willingness to use it. The other 
factors predicting willingness to use the urban system include system monitoring and Van Der 
Laan’s Usefulness scale, whereby higher ratings of system usefulness, and increased willingness 
to engage in a secondary task, led to increased willingness to use the urban system. 

However, most of the participants of the Pilot site studies of the Urban ADF evaluation were 
passengers. This could again overestimate the positive evaluation of the system. Therefore, the 
findings should be used as a guide to provide the overall impressions of the system. More future 
studies should be conducted to investigate users’ experience and their evaluation of a more 
mature system that allows them to be the user seated in the driver’s seat. Users’ subjective 
experiences and evaluation of the system are important because they predict willingness to use 
and general acceptance.  

4.3 Parking 
For parking, it was not possible to merge the questionnaire data on the level of single responses. 
Therefore, merging was done on the level of studies on parking ADF. For every study and every 
analysed questionnaire item, information on the proportion of drivers agreeing or disagreeing with 
the statement was merged. The combined results are based on answers collected in three different 
studies on parking. The graphs below show the proportion of drivers agreeing and disagreeing, 
with every study adding one data point. 
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4.3.1 RQ-U1: Are Drivers Willing to Use a Parking ADF? 

Across all studies, most of drivers agreed or strongly agreed with the statement that they would be 
willing to use the ADF. 

 

Figure 4.26: Proportion of drivers agreeing and disagreeing with the questionnaire items for RQ-
U1. 

4.3.2 RQ-U3: What Is the User Acceptance of the ADF? 

Across studies, most of drivers stated that they felt safe parking with the parking ADF, trusted the 
ADF to park, and that they believed the system to be useful. In Figure 4.27 this corresponds to a 
large proportion of drivers agreeing with the three statements and only a small proportion 
disagreeing. 

 

Figure 4.27: Proportion of drivers agreeing and disagreeing with the questionnaire items for RQ-
U3. 
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4.3.3 RQ-U5: What Is the Impact of ADF on Driver State? 

In all studies, drivers reported that parking with the ADF was not demanding. Contrary to that, in 
two studies drivers stated that parking with the ADF was not stressful, while in the third study using 
the ADF was perceived by most drivers as stressful. Therefore, stress results vary across studies 
and functions. 

 

Figure 4.28: Proportion of drivers agreeing and disagreeing with the questionnaire items for RQ-
U5.  

4.3.4 RQ-U6: What Is the Impact of ADF Use on Driver Awareness? 

There were differences between the studies in terms of drivers' perception of how parking with the 
ADF influenced their awareness of the environment. In one study, a majority of drivers stated that 
they were more aware of their environment when parking with the ADF. However, in the other 
studies, drivers tended to disagree with that statement. 

It should be considered that the different studies might have used totally different ADFs 

 

Figure 4.29: Proportion of drivers agreeing and disagreeing with the questionnaire items for RQ-
U6. 
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5 Summary 

This deliverable presents the evaluation of the data collected during the Pilots within the European 
Research project L3Pilot. Two areas are considered, related to Technical and Traffic aspects and 
User and Acceptance evaluation. Piloting activities were performed for the three types of operative 
domains: motorway (including traffic jam), urban, and parking. For the RQs formulated for each of 
these use cases, scenarios and PIs were defined in order to confirm or deny the formulated 
hypotheses. 

Accompanying the evaluation of the Technical & Traffic assessment, which deals with the technical 
capabilities of the systems and the effects on the behaviour of the piloted vehicle in the traffic 
context, user related assessments were performed using questionnaires. These questionnaires 
were handed to the participants of the Pilot studies to capture their expectations and experiences 
with the Pilot vehicles. 

This chapter summarises the main findings detailed in the previous chapters. 

5.1 Motorway 
For the motorway and traffic jam ADF, the following points are noteworthy (comparisons of ADF vs. 
manual driving): 

● While driving with the ADF, speed is significantly reduced across scenarios. 

● While driving with the ADF, the distance kept to the lead vehicle is significantly increased. 

● While driving with the ADF, lane keeping is significantly more stable. 

● Driving with the ADF leads to a reduction of lane changes of the ADF vehicle and approaching 
scenarios. More driving time is spent in stable scenarios like car following. 

● Drivers who experienced motorway ADF were generally positive about the piloted system, 
including the take-over experience, but with opportunity for improvement on system 
performance to match users’ expected behaviour, as this would increase willingness to use the 
system. 

● No motion sickness was reported by the studies’ participants and drivers agreed that the system 
was comfortable, especially behaviours in situations where the vehicle was less interactive with 
other traffic participants. 

● The opportunity to engage in secondary tasks and the usefulness of the system increase the 
willingness to use. 

● Professional drivers were revealed to be less positive towards the motorway ADF than ordinary 
drivers. However, system familiarity and driver type did not affect willingness to use the system. 
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5.2 Urban 
For the urban ADF, the following points are noteworthy: 

● Systems are at a lower readiness level compared to motorway systems, so the results need to 
be considered carefully. 

● Urban environments and systems are more complex compared to motorways. This makes it 
more challenging to evaluate systems and potential effects. 

● Due to the complexity of the urban use case requiring a large amount of driving data to cover all 
facets of urban driving, a clear effect of urban ADFs cannot be stated. 

● Overall, ADFs tend to spend more time within intersections given their more cautious approach 
to conflicts (not necessarily negative). 

● Results presented in this deliverable are based on bootstrapped data to balance the amounts of 
data at the different Pilot sites while preserving confidentiality (see Annex 4). This must be 
considered when viewing and analysing the results presented here. 

● Participants were generally positive towards the urban system, but not as positive as with the 
motorway system. There was opportunity for improvement on system performance to match 
users’ expected behaviour, as this would increase willingness to use the system. 

● No motion sickness was reported by the studies’ participants; subjects agreed that the system 
was comfortable, especially behaviours in situations where the vehicle was less interactive with 
other traffic participants. 

● The opportunity to engage in secondary tasks and the usefulness of the system increase the 
willingness to use. 

● Unlike the motorway system, the users familiar with the urban system were willing to use it; 
moreover, the more familiar they were, the higher their willingness to use. 

5.3 Parking 
For the parking ADF, the following points are noteworthy: 

● Parking with an ADF takes longer and involves more stops. 

● While parking with an ADF, speed is lower than during manual driving. 

● Drivers state that they are in favour of parking ADFs. They would use the system and 
considered it to be safe and useful. 
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5.4 Conclusion 
When comparing the different systems (motorway, urban, parking), only a few overall conclusions 
can be drawn. One point that is common to all is the lower speed driven with the ADFs activated in 
comparison with baseline driving. Additionally, for urban and motorway cases, driving is more 
stable, i.e., scenarios such as following a lead vehicle are longer and lane keeping performance is 
increased. Overall, participants were positive towards the functions, with variations among the 
functions. In general, participants felt comfortable while experiencing the ADFs. However, for all 
systems, drivers were also aware of or noticed shortcomings of the tested prototype functions or 
expected different behaviour of the functions in some cases. However, it can be noted that even 
with the shortcomings of these, somewhat prototype functions, no motion sickness was 
encountered by the participants.  

Going further into detail, the conclusions for the functions differ, as do the use cases. Therefore, no 
further overall conclusions can be drawn. 

5.5 Discussion, Recommendations, and Implications 
The vehicles used in the pilots were equipped with prototype human-machine interfaces and 
control systems enabling automated driving. These systems are still under development, and their 
maturity inevitably varied between and within the Pilot sites, should any updates have been 
required during the prolonged testing schedule at some Pilot sites. The use of “imperfect” 
prototypes and any unexpected behaviour of the systems may have resulted in unpleasant driving 
or interaction experiences for users, which may have influenced users’ experience, and thus 
acceptance of the system, since a development system that is prone to errors is likely to elicit 
different acceptance ratings, compared to a market-ready system. Therefore, these factors should 
be borne in mind when considering the results. 

The following statements and recommendations can be drawn from the data collected in the Pilots: 

● Potential for urban ADF has been shown. However, it will benefit with more and diverse data to 
be able to show results. 

● Pilots were completed either with the presence of safety drivers monitoring the participants’ 
performance or the vehicles were completely piloted by safety drivers. In either case the role of 
the safety driver was to deal with any unusual situation. Therefore, participants could potentially 
have a higher sense of safety as well as a sense of “easiness” which leads to an “overtrust” in 
the system. Furthermore, the systems would always be overridden if faced with critical 
situations, which made the evaluation of ADF in such situations impossible. 

● We need to be very cautious while comparing systems, driver types, and test and study types. 
This was mainly due to the nature of the different systems and data being collected via different 
pilots that consisted of different study designs. 
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● The reported findings are designed to be used as a guide and to provide overall impressions. 
More research is needed to understand the implications of these findings for driver interactions 
with mature systems.  

● Users’ subjective experiences and their evaluation of the system predict willingness to use and, 
therefore, it is important to ensure acceptance for those systems and that users have positive 
experiences in future evaluations. 

● Users’ ability to engage in secondary tasks was a significant predictor of willingness to use. The 
most widely reported secondary tasks that users were likely to engage in while the system was 
active included listening to music, radio, an audiobook, navigation, interacting with a passenger, 
using smartphone apps, and texting. Therefore, it is important that manufacturers consider 
these preferences when designing their user interfaces, to make it as comfortable and easy as 
possible to engage in these tasks. 

● User evaluations suggest that there are some system performance elements that could be 
improved further. These include behaviour at motorway junction areas and lane changing 
behaviour, the distance kept to obstacles and road markings, the smoothness of driving in the 
city, turning behaviour in intersections and curves, behaviour when approaching pedestrians at 
intersections, and the distance kept to pedestrians and cyclists when overtaking in urban 
environments. The majority of these are situations where interaction with other road users is 
more likely to occur, and therefore the safety implications may be considered higher. 

● In the future, more testing should be conducted, especially to extend the systems’ capabilities 
between ODDs, as well as to investigate users’ ability to take-over control in critical situations 
when the system becomes more mature. 

● Studies should be conducted considering long-term exposure to automated driving once the 
maturity and legal framework for piloting the systems allows such studies. Until then, simulation-
based studies should be used complementarily. 

● It should also be considered that the SAE L3 ADF are leading to vehicles with much better 
environment perception (sensors) which can be used besides the L3 ADF for improvement of 
active safety systems and extend the use of these active safety features way beyond the ODD 
of the L3 ADF. Therefore, the safety benefit of L3 ADF can be improved significantly at very low 
additional cost. 
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6 Lessons Learnt 

This chapter contains a number of lessons learned which became obvious to evaluation partners 
during the various analyses, as well as a resulting recommendation for future research activities 
involving on-road piloting of automated vehicles. A more detailed view of the lessons learned with 
regard to data management can be found in Deliverable D5.2 – Guidelines and Lessons Learned 
(Koskinen et al., 2021). 

6.1 Experimental Setup 
The FESTA methodology provides a useful guideline which can be applied to piloting studies 
concerned with functions not yet introduced to the market. The PREPARE phase, and especially 
the definition of the experimental setup, is of great importance for the relevance of the later design 
and evaluation. Important considerations to be taken into account are:  

● To be able to make a useful interpretation of the data, the prototypes should be described in the 
greatest possible detail in terms of sensor setup, algorithms, parameters, HMI design, etc., 
while remembering that the studies are executed with prototypes and not systems intended for 
production. 

● Testing of prototype functions by preference evaluates stable driving behaviour. In contrast, the 
evaluation of rare or critical events is quite challenging. 

● Due to the high complexity of urban environments, the risk of having non-comparable Pilot sites 
is higher than for motorways. This requires coordination of experimental setups among urban 
Pilot sites and an extensive data collection to cover all relevant scenarios. 

● The lack of regulatory alignment across European countries, such as differences in the 
permissions granted for the tests, affects the possibilities to achieve consistent results on user 
testing across Pilot sites. For example, there may be variations across Pilot sites in terms of the 
types of drivers who are allowed to participate, which raises challenges for comparisons across 
the project. Harmonising these results across European countries would go a long way towards 
creating a more productive environment for large-scale testing of automated driving. This is 
even more the case for urban environments, where the infrastructural differences alone have a 
much higher influence on the results generated at each Pilot site. 

● Pilot sites may vary in terms of participants’ specific or unrestricted roles and permitted activities 
when operating prototype vehicles. For example, since drivers at particular sites were not 
permitted to engage in non-driving related tasks during the pilot, this may have affected our 
ability to answer some questions at project level. 

6.2 Data Collection and Pre-processing 
Apart from the experimental setup, the setup of the data collection has a big influence on what 
conclusion can be drawn from the data and which efforts are required for a harmonised 
assessment. 
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● An early and consistent agreement of data that is to be shared is important and should be 
adhered to by all partners. Adding data at a later stage often proved to be a bottleneck in the 
further processing and handling of data as well as in the generation of results. 

● When conducting studies across multiple sites, it is essential that any cross-Pilot methods are 
administered using the same tools and protocols. For example, questionnaires were 
administered across all Pilot sites using an online tool, which minimises variance, not only 
between Pilot sites, but also between experimenters. This approach also ensured that the data 
output could be integrated seamlessly into the common data format and transferred to a 
consortium-wide CDB. 

6.3 Data Analysis 
Apart from the pre-processing of data and quality checks, the methods for evaluation data should 
ensure a harmonised evaluation of the data from the different Pilot sites. 

● Usage of a common data format allowed for the creation of one overall toolchain for the analysis 
of data and generation of results. While it does not solve all the problems that can occur when 
dealing with data from multiple sources, sensor set-ups, etc., a common format makes the 
development and integration of the tools substantially easier and allows the easy sharing of 
tools among evaluation partners. 

● A toolchain including data manipulation, computation of PIs, conversion to the common data 
format, and implementation of the data processing toolchain under the given constrains of 
treating all data without making single Pilot sites identifiable, was time consuming and 
sometimes needed repeated revisions of the complete process. 

● If possible, most quality checks of the processed data should already be handled before the 
upload to the pseudonymised database. This makes it easier to match unexpected values in 
the output data (PIs) to errors in scripts used or wrong input data. 

● Bugs that become apparent in the merged, pseudonymised data are much more resource 
consuming, as it is hard to investigate whether all Pilot sites are affected or just a single one. 

● Identified issues, especially those concerning scenario detection, require a complete 
reprocessing and reupload by the data processing partners. An organised approach to 
versioning the toolchain and the uploaded data needs to be assured. 

● Automatic data annotation and inspection is still a challenge for naturalistic driving data. When 
verifying data quality and data sequences (e.g., scenario detection by scripts), the role of birds’ 
eye GUIs for delivering object-level information – e.g., tracked objects, lanes, etc., synchronized 
with a modern video viewer capable of scene pausing/rewind/forward – is significant for the role 
of the data analysis partner who typically performs the analysis in a mixed manner of manual 
and automatic inspection. 
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● Although anonymisation of data origin in the CDB makes data sharing in such a large 
consortium possible and keeps confidentiality, it also makes error tracing a complex and time-
consuming task, in most cases involving all Pilot data processing partners. 

● When analysing urban data, much focus has to be put on closely and precisely defining the 
ODD and the overall capabilities of the function, as small differences in these can lead to big 
changes in the effects of the functions. 

● The variance in the urban environment across different European countries may lead to big 
differences between different Pilot site setups. It is therefore of utmost importance to clearly 
define infrastructure elements and the influence they might have on systems. A wider range of 
urban environments (e.g., spanning more cities, countries, different urban types) could allow for 
a more encompassing analysis of urban functions. 
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List of abbreviations and acronyms 

Abbreviation Meaning 
AD Automated driving 

ADAS Advanced Driver Assistance Systems 

ADF Automated Driving Function 

AIM Application Platform for Intelligent Mobility 

API Application programming interface 

AV Automated Vehicles 

BL Baseline 

CDB Consolidated database 

CoP Code of Practice 

DM Derived Measure 

GUI Graphical user interface 

NDRT Non-driving related task 

PI Performance Indicator 

RQ Research questions 

SD Standard deviation 

THW Time Headway 

TOR Take-over request 

TTC Time-to-Collision 

VRU Vulnerable Road User 
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Annex 1 Research questions 

Table A1.1: Research questions for motorway ADF and evaluated performance indicators 

ID Level 2 RQ Feasibility Analysed instances Analysed Performance 
indicators 

RQ-
T1 

How reliable is 
system performance 
in a given driving and 
traffic scenario? 

Only 
descriptive 
analysis 

Trip %time ADF available, duration 
ADF active 

RQ-
T2 

How often do take-
over requests occur? 

Only 
descriptive 
analysis 

Trip N(TOR)/h 

RQ-
T3 

Does the function 
initiate a take-over 
request if required by 
the boundaries of the 
ADF? 

No From the logged data of the system, it could not be 
evaluated, whether the system reached the ODD boundary 
to validate whether a TOR was issued 

RQ-
T4 

Are there any traffic 
violations while using 
the ADF? 

No No traffic violations could be shared apart from difference 
to speed limit which is reported in RQ-T8 

RQ-
T5 

How do take-over 
requests affect 
driving? 

Only for 
selected 
Pilot sites 

Take-over situation TOC-rating 
reported in sections 4.1.7 

RQ-
T6 

What is the impact of 
ADF on vehicle 
dynamics? 

Yes Uninfluenced driving, 
following, traffic jam, 
approaching lead 
vehicle, approaching 
traffic jam, lane change, 
cut-in 

min(ax), max(ax), sd(ax), 
max(abs(ay)), sd(ay) 

RQ-
T7 

What is the impact of 
ADF on the accuracy 
of driving? 

Yes Uninfluenced driving, 
following, traffic jam, 
approaching lead 
vehicle, approaching 
traffic jam 

sd(lat.Pos.), m(lat.Pos.), sd(v) 

RQ-
T8 

What is the impact of 
ADF on the driven 
speed? 

Yes Uninfluenced driving, 
sd(v) also for following, 
traffic jam 

m(v), max(v) 

RQ-
T9 

What are the impacts 
of ADF on energy 
efficiency? 

Yes Trip m(Energ.Cons.)/100 km 

RQ-
T10 

What is the impact of 
ADF on the frequency 
of near-crashes / 
incidents? 

Yes Following, lane change, 
cut-in, approaching 

N(distance incidents)/scenario, 
N(dynamic incidents)/scenario 

RQ-
T11 

What is the impact of 
ADF on the frequency 
of certain events? 

Yes Trip N(scenario type)/h, 
%time(scenario type) 
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ID Level 2 RQ Feasibility Analysed instances Analysed Performance 
indicators 

RQ-
T12 

What is the impact of 
ADF on the 
interaction with other 
road users in a 
defined driving 
scenario? 

Yes Following, traffic jam, 
approaching lead 
vehicle, cut-in 

m(THW), sd(THW), min(THW), 
min(TTC)  

RQ-
T14 

What is the impact of 
ADF on the number of 
near-crashes / 
incidents with other 
road users? 

Yes, 
together 
with RQ-T10 

  

RQ-
T15 

How does the ADF 
influence the behavior 
of subsequent 
vehicles? 

Only for 
selected 
Pilot sites 

  

RQ-
T16 

How does the ADF 
influence the behavior 
of preceding 
vehicles? 

Yes, 
together 
with RQ-T12 

Following, approaching 
lead vehicle 
trip 

diff(v_LeadVeh), 
sd(v_LeadVeh) 
 
N(LaneChange_LeadVeh)/h 

RQ-
T17 

What is the impact of 
ADF on the number of 
near-crashes / 
incidents of other 
traffic participants? 

Only for 
selected 
Pilot sites 

  

 

Table A1.2: Research questions for urban ADF 

ID Level 2 RQ Feasibility Analysed instances Analysed Performance 
indicators 

RQ-
T1 

How reliable is 
system performance 
in a given driving 
and traffic scenario? 

Only 
descriptive 
analysis 

Trip - 

RQ-
T2 

How often do take-
over requests occur? 

No Urban experiments did not include TORs 

RQ-
T3 

Does the function 
initiate a take-over 
request if required 
by the boundaries of 
the ADF? 

No 

RQ-
T4 

Are there any traffic 
violations while 
using the ADF? 

No Only difference to speed limit could be analysed (RQ-T8) 

RQ-
T5 

How do take-over 
requests affect 
driving? 

No Urban experiments did not include TORs 
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ID Level 2 RQ Feasibility Analysed instances Analysed Performance 
indicators 

RQ-
T6 

What is the impact of 
ADF on vehicle 
dynamics? 

Yes Uninfluenced driving, 
following, approaching 
lead vehicle, lane change, 
cut-in, intersections 

min(ax), max(ax),m(ax), m(ay) 
sd(ax), max(abs(ay)), sd(ay) 

RQ-
T7 

What is the impact of 
ADF on the accuracy 
of driving? 

Yes Uninfluenced driving, 
following, approaching 
lead vehicle 

m(Pos. in lane), sd(Pos. in 
lane 

RQ-
T8 

What is the impact of 
ADF on the driven 
speed? 

Yes Uninfluenced driving, 
following, approaching 
lead vehicle, lane change, 
cut-in, intersections 

m(v), max(v) 

RQ-
T9 

What are the 
impacts of ADF on 
energy efficiency? 

No (data not 
shared) 

  

RQ-
T10 

What is the impact of 
ADF on the 
frequency of near-
crashes / incidents? 

No (data not 
shared) 

  

RQ-
T11 

What is the impact of 
ADF on the 
frequency of certain 
events? 

Yes Trip, uninfluenced driving, 
following, approaching 
lead vehicle, lane change, 
cut-in, intersections 

N(scenario)/h, scenario 
duration, m(Dur(v<0,2km/h)), 
N(v<0,2km/h)/h, N(intersection 
scenario 
subtype)/N(intersection 
scenario type) 

RQ-
T12 

What is the impact of 
ADF on the 
interaction with other 
road users in a 
defined driving 
scenario? 

Yes Uninfluenced driving, 
following, approaching 
lead vehicle, lane change, 
cut-in, intersections 

m(THW), min(THW) [s], 
m(long. Dist. Lead veh.), m(v 
lead veh.), Duration [s], 
min(Distance) , min(TTCP) 

RQ-
T14 

What is the impact of 
ADF on the number 
of near-crashes / 
incidents with other 
road users? 

No (data not 
shared) 

  

RQ-
T15 

How does the ADF 
influence the 
behaviour of 
subsequent 
vehicles? 

Yes Uninfluenced driving, 
following, approaching 
lead vehicle, lane change, 
cut-in 

m(THW rear veh.), min(THW 
rear veh.), sd(THW rear veh.), 
min(ax rear veh.) 

RQ-
T16 

How does the ADF 
influence the 
behaviour of 
preceding vehicles? 

Yes Following, approaching 
lead vehicle 

m(v lead veh), m(v) 
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ID Level 2 RQ Feasibility Analysed instances Analysed Performance 
indicators 

RQ-
T17 

What is the impact of 
ADF on the number 
of near-crashes / 
incidents of other 
traffic participants? 

No (data not 
shared) 

  

 

ID Level 2 RQ Feasi-
bility 

Analysed Performance 
indicators 

RQ-
T1 

How reliable is system performance in a given driving 
and traffic scenario? 

No  
 

RQ-
T2 

How often do take-over requests occur? No  

RQ-
T3 

Does the function initiate a take-over request if required 
by the boundaries of the ADF? 

No  

RQ-
T5 

How do take-over requests affect driving? No  

RQ-
T6 

What is the impact of ADF on vehicle dynamics? Yes min(ax), max(ax), sd(ax), 
max(abs(ay)), sd(ay) [m/s2] 

RQ-
T7 

What is the impact of ADF on the accuracy of driving? Yes m(duration), 
N(stops)/manuever 

RQ-
T8 

What is the impact of ADF on the driven speed? Yes m(v), max(v), sd(v) [km/h] 

 

Table A1.3: User and acceptance research questions in L3Pilot and the methods used to address 
them. Vehicle and video data includes TOC rating. 

RQ – 
Level 1 

RQ – Level 2 Real world pilot Other methods 
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What is the 
impact of 
ADF use on 
user 
acceptance 
& 
awareness? 

Are drivers willing 
to use an ADF? 

X X X X X  X 

How much are 
drivers willing to 
pay for the ADF? 

  X X   X 

What is the user 
acceptance of the 
ADF? 

  X X X X X 
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RQ – 
Level 1 

RQ – Level 2 Real world pilot Other methods 
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What is the impact 
of ADF on driver 
state? 

 X  X X   

What is the impact 
of ADF use on 
driver awareness? 

 X X X X X  

What are drivers’ 
expectations 
regarding system 
features? 

  X X X  X 

What is the 
impact of 
ADF use on 
user 
experience? 

What is drivers’ 
secondary task 
engagement 
during ADF use? 

 X X  X X  

How do drivers 
respond when 
they are required 
to retake control? 

X X X X X X  

How often and 
under which 
circumstances do 
drivers choose to 
activate/deactivate 
the ADF? 

X X  X X   

What is the impact 
of ADF use on 
motion sickness? 

  X     

What is the impact 
of motion sickness 
on ADF use? 

  X     
 

This chapter provides details on how the L3Pilot scenarios’ detection scripts (implemented in Data 
subproject and used and refined in Evaluation subproject) were implemented. Configuration of 
scenario detection was based on various parameters from the research literature together with 
empirical knowledge of L3Pilot experts on driving scenarios and events, which was then 
transformed into conditions for scenario detection. 
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Annex 2 Driving Scenarios 

A2.1. Motorway 
For the motorway ADF, a set of mutually exclusive driving scenarios (see A2.1.6 covering the most 
common interactions on motorways, were defined (see project deliverable D3.3 (Metz et al., 2019) 
for scenario definitions). 

A2.1.1. Lead Object Scenarios 

Lead object scenarios are dependent on detecting the lead object in the ego-vehicle lane and then 
assessing the distance to and speed of the lead object. Depending on the time headway (THW) 
(the distance to an object divided by the speed of the ego-vehicle), the following definitions are 
important for understanding the difference between the scenarios: 

1. A Close object is when the THW is less than 2 seconds between the two objects. 

2. An In-between object is when THW is between 2 s and 3.5 s. 

3. A Distant object when THW is more than 3.5 s. 

4. No lead object detected. 

In addition, the following definitions are set: 

1. Speed tolerance is set to 1.4 m/s. 

2. Minimum duration of the scenarios is set to 2 seconds (not applicable to Approaching a static 
object). 

3. Minimum speed of the ego-vehicle is set to 5.56 m/s (not applicable to Approaching a lead or 
static vehicle). 

The definitions stated above are made to reflect actual driving but there is a risk of having long 
periods not qualified for any scenario, since the minimum duration can be quite restrictive when the 
scenario is switching between following a lead object and approaching a lead object. If an 
approaching a lead object scenario is between two following a lead object scenarios and the 
distance does not decrease more than 30% from the start until the end of the scenario, then the 
approaching a lead vehicle is replaced by a consecutive following a lead object scenario. 

Variable definitions: 

● THW Close: <2 s 

● THW In-between: >= 2 s and < 3.5 s 

● THW Distant: 3.5 s 

● Speed tolerance: 1.4 m/s 

● Minimum duration: 2 s 

● Maximum drop out: 0 s 
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● Minimum speed: 5.56 m/s 

● Minimum longitudinal distance decrease: 30% 

● Static object speed: 1 m/s 

These scenarios are then applying the Mutually Exclusive Scenario Algorithm (cf. A2.1.6) 
described below. 

A2.1.1.1. Uninfluenced Driving 

Uninfluenced driving is classified if no object is detected, if a detected object is Distant, or if a lead 
object is In-between and travelling faster than the ego-vehicle by more than the Speed tolerance. 
The ego-vehicle must travel faster than Minimum speed and the consecutive duration of the criteria 
must be longer than Minimum duration. 

 

Figure A2.1: Uninfluenced driving scenario. 

A2.1.1.2. Approaching a Lead or Static Object 

A Close or In-between lead object is detected and the speed difference between the ego-vehicle 
and lead object is higher than Speed tolerance. There is a specific clause when a Close lead 
object has a lower speed of 1 m/s and then the scenario is classified as approaching a static 
object. 

  
(a) (b) 

Figure A2.2: Approaching a (a) lead or (b) static object scenario. 

A2.1.1.3. Following a Lead Object 

If a Close lead object is detected, then the scenario is classified as following a lead object as long 
as the speed difference does not qualify for an approaching scenario, i.e., less than Speed 
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tolerance. If the relation between the two objects has a THW of In-between, then Following a lead 
vehicle is classified when the speed difference between the two objects are +- Speed tolerance. 

 

Figure A2.3: Following a lead object scenario. 

A2.1.2. Approaching a Traffic Jam 

The ego-vehicle is approaching a traffic jam. This scenario is defined and classified as the 20 s 
before the scenario driving in a traffic jam. 

 

Figure A2.4: Approaching a traffic jam scenario. 

A2.1.3. Driving in a traffic jam 

The ego-vehicle is travelling in a traffic jam. This is determined by a speed below 60 km/h over a 
period of at least 180 s. 

 

Figure A2.5: Driving in a traffic jam scenario. 

A2.1.4. Lane Change 

Lane changes of the ego -vehicle are derived from the lateral position of the ego-vehicle with 
respect to the position of the lane markings. When a left or right marking is crossed, a lane change 
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is detected and its start- and endpoint are determined. The starting point of the lane change is the 
point at which the car starts moving in the direction of the lane marking before crossing the 
marking. The end point of the lane change is the point where the car stops moving away from the 
lane marking after crossing the marking. A maximum window size of 10 s before and after crossing 
the marking is set to limit the start- and endpoint, respectively. Left and right lane changes are 
coded separately. 

 

Figure A2.6: Lane change scenario. 

A2.1.5. Cut-In 

Cut-ins are derived from the data as follows: 

For each timestamp at which a change in Lead Vehicle id is detected, the lateral displacement of 
the object before becoming the newLeadVehicle is checked within a time window (defined by 
MaxStepsBefore , MaxStepsAfter thresholds) and newLeadVehicle id is classified as cut-in from 
the left or the right, if all the following criteria hold: 

● NewLeadVehicleDistance < ExclusionDistance , where ExclusionDistance = THW * 
egoVehicle.Speed 

● NewLeadVehicleVelocity < ObjectSpeedThreshold 

● NewLeadVehicleOrigin == {LeftLane, RightLane} 

● Lateral displacement (m) between Cut-in start and Cut-in end timepoints > 
MinLateralMovement. Where: 

● Cut-in start is defined as the moment when newLeadVehicle distance from lane marking is 
lower than than a threshold (defined by MinDistanceToLaneMarking). 

● Cut-in is considered terminated when the newLeadVehicle is within the ego-vehicle's lane, 
i.e., the distance of the newLeadVehicle from the lane marking is below a given threshold 
(defined by the EgoLaneTolerance). 

● Time displacement (in seconds) between Cut-in start and Cut-in end timepoints > 
MinCutInSamples 

Cut-in detection configuration parameters: 

• THW –  Time gap above which cut-ins are no longer considered (Default: 2 s) 
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• MaxStepsBefore - Maximum number of steps considered before the new lead vehicle appears 
(Default: 50) 

• MaxStepsAfter - Maximum number of steps considered after the lead vehicle appears (Default: 
50) 

• MinDistanceToLaneMarkings – Minimum distance the vehicle needs to have to the lane 
markings in the other lane at start (Default: 1 m) 

• EgoLaneTolerance – Minimum distance the lead vehicle needs to have to lane markings in the 
ego lane (Default: 1 m) 

• MinCutInSamples – Minimum number of samples considered for the scenario (Default: 1 s) 

• MinLateralMovement – Minimum lateral movement needed by the cutting in object (Default: 
1 m) 

• ObjectSpeedThreshold – Threshold in relation to the ego velocity from which to exclude objects 
as cut-ins (default: 2 m/s) 

As for all the other scenarios, they also pass through the algorithm for mutually exclusive 
scenarios. 

 

Figure A2.7: Cut-in scenario. 

A2.1.6. Mutually Exclusive Scenario Algorithm 

Due to signal noise and smoothing, it can occur that the independent scenario extraction pipelines 
simultaneously report the presence of otherwise mutually exclusive scenarios. To enforce the 
mutual exclusivity defined within D3.3 (Metz et al., 2019) in a deterministic fashion, an algorithm 
based on weighted directed acyclic graphs (DAG) was developed. 

As input, the algorithm requires the scenario detections for each time step, a list of which 
transitions from one scenario to another are allowed between time steps, and a minimum duration 
for each scenario to filter out false positive detections. With these inputs, it can still occur that two 
simultaneously detected scenarios are deemed valid. In that case, to achieve a deterministic result, 
a prioritisation must be assigned to each scenario to decide which scenario is chosen over the 
other. The basic principle of the algorithm is that the nodes represent the time step, the scenario, 
and the remaining required duration of the scenarios. The validity of transition is indicated through 
the presence of an edge, and the prioritisation is depicted through weighting of the edges. Finally, 
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the deterministic selection of scenario detections without any overlap of mutually exclusive 
scenarios is acquired through the shortest path through the graph from start to end. 

Each node is specified through the scenario, timestamp of detection, and remaining time required 
to reach the minimum duration of the scenario. Therefore, as the first step for each positive 
scenario detection at a given timestamp, corresponding nodes are created for all possible values of 
the required remaining duration. Then, the edges between nodes that are consecutive in time are 
set according to the three following rules: 

● The two nodes are of the same scenario, consecutive in time, and the required remaining 
duration decreases by the time step or stays at zero. 

● The remaining required duration of the first node is at zero, the transition of the scenario of the 
first node to the scenario of the second node is valid, and the required remaining duration of the 
second node equals the respective minimum duration. 

● If the two previous rules did not produce any valid edges for a time step, the edges from all the 
nodes of the first time step to all the nodes of the second time step are set with their remaining 
required duration at their respective minimum duration. 

Finally, a start and end node are added to the graph to be able to compute a path through the 
network. To incorporate the prioritisation, each edge is weighted by a value according to the 
prioritisation of the scenario the directed edge points to. The lower the prioritisation of the scenario, 
the higher the weight of the edge. Now the scenarios for each time step on the shortest path from 
start to end node are the resulting mutually exclusive scenario detections. Since the approaching 
traffic jam scenario has a fixed duration, a special rule is introduced that allows edges to the 
corresponding nodes, even if the source node has not yet reached is minimum duration. As a last 
processing step in the conversion from the nodes of the shortest path to scenario detections, 
detection sequences shorter than their minimum duration are neglected. Dijkstra’s algorithm is 
used to find the shortest path. 

 

Figure A2.8: An example of a scenario sequence and the DAG. 
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The figure above (Figure A2.8) illustrates the creation of a DAG. The dotted lines show the original 
scenario detections from which the nodes and edges are built according to the set rules. The 
subscript of the node indicates the scenario and the superscript the required remaining minimum 
duration. The dark grey nodes are not reachable from the start node or the end node, because 
they are not of sufficient duration or no transition to them was possible. The light grey nodes were 
not chosen because the scenario of the white nodes was had higher prioritisation (lower weights 
on the corresponding edges). 

A2.2. Urban 
For the urban ADF, the scenarios defined for the motorway were all used, except those regarding 
traffic jam. Considering the different environment for urban, additional scenarios were defined. 
These mainly regard intersections, which are not present in the motorway use case. Additionally, 
scenarios with oncoming traffic are included (see initial definition of scenarios in project deliverable 
D3.3 – Evaluation Methods (Metz et al., 2019)). 

A2.2.1. Intersection Scenarios 

For intersections, four different scenarios were defined for the two types of intersection transits 
(crossing and turning). 

A2.2.1.1. Crossing / Turning with Laterally Moving Object 

When passing through intersections, the ego-vehicle often has to deal with objects that cross its 
path. These can be vehicles or VRUs that have the right of way (or take it from the ego-vehicle) in 
a crossing situation, as well as VRUs who have the right of way at their crossing when the ego-
vehicle is turning left or right. In addition, oncoming traffic that needs to pass through when turning 
is also covered by this scenario. 

  
(a) (b) 

Figure A2.9: (a) Crossing or (b) turning with laterally moving object scenarios. 

A2.2.1.2. Crossing / Turning with Static Object 

A final intersection scenario was added where the vehicle passes through an intersection with a 
static object. This scenario can occur when there is an object blocking the way within the 
intersection and/or at the desired exit. 
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(a) (b) 

Figure A2.10: (a) Crossing or (b) turning with static object scenarios. 

A2.2.1.3. Crossing / Turning with Lead Object 

In addition to passing through the intersection without any conflict, the ego-vehicle can also be 
following a lead object. In the urban use case, this can be a vehicle or any kind of VRU. In this 
scenario, the ego-vehicle’s speed is determined by the object it is following. 

  
(a) (b) 

Figure A2.11: (a) Crossing or (b) turning with lead object scenarios. 

A2.2.1.4. Crossing / Turning without Conflict 

The most straightforward intersection scenario is that of crossing or turning without conflict. In this 
scenario, the ego-vehicle drives through the intersection without any conflict and without being 
influenced by other traffic participants in any way. 

  
(a) (b) 

Figure A2.12: (a) Crossing or (b) turning without conflict scenarios. 
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A2.2.1.5. Calculation of Intersection Scenarios 

As specified in the main text (cf. Section 2.5.4.1), scenarios were prioritised in the order in which 
they appear in this chapter (laterally moving objects, static objects, lead objects, without conflict). 

For the implementation of the scenarios, the calculation can therefore not be considered for each 
scenario separately. Additionally, scenarios are split up after standstills, as these can change the 
further interaction of the ego-vehicle at a scenario (e.g., when the ego-vehicle has already turned). 
Within each of these subsections, the following steps are performed until a scenario has been 
found: 

● Check the angle of travel across the intersection and determine turning or crossing from that. 

● Check for close encounters of the ego-vehicle trajectory with other trajectories. 

● If yes, check for the intersecting trajectories and calculate the measures for laterally moving 
objects. 

● If no, check if the ego-vehicle has a lead object while travelling through the intersection. 

● A lead object scenario can also occur when the ego-vehicle has a lead object when entering 
or leaving the intersection. 

● If yes, it was an intersection scenario with a lead object. 

● If no, there was no conflict or interaction within the intersection. 

A2.2.1.6. Overtaking with Oncoming Traffic (Active / Passive) 

Apart from intersections, urban traffic also differs from the motorway use case in that oncoming 
traffic is not separated by a barrier. This opens up the traffic to the scenario of interacting with 
oncoming traffic. As an example, this can happen when there is a delivery van parked on the lane 
of the ego-vehicle which the ego-vehicle needs to overtake in the lane of the oncoming traffic. This 
can happen in the form of the ego-vehicle doing the overtaking (active) or having to interact with a 
vehicle that does the overtaking (passive). 

  
(a) (b) 

Figure A2.13: Overtaking with oncoming object (a) active or (b) passive scenarios. 
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Annex 3 Intersection Definitions 

In the urban evaluation, many of the urban-specific PIs were related to intersections. For all the 
urban Pilot sites, the intersections had to be defined manually. To ensure that the performance 
indicator data from all the Pilot sites were merged and analysed in a comparative way, it was 
important to agree on a common understanding on what an intersection is and how to define it. 

The terms junction and intersection are sometimes used interchangeably, but they can have 
separate definitions. The European road accident database CARE, for example, uses junction as a 
larger area that can contain multiple intersections (Saurabh, 2018). The intersection is the small 
intersectional area of two or more roads and a junction is the area 20 metres in each direction from 
the intersections of the junction. If the distance between two intersections is less than 10 metres, 
the area between them is also a separate intersection. If the distance is between 10 and 20 
metres, it is a “through roadway” area. If the distance is more than 20 metres, the intersections 
belong to separate junctions. 

To determine how we should define the intersection present in the urban Pilot sites of L3Pilot, we 
had to consider the detected scenarios, derived measures and PIs, and the impact the size and 
features of the intersection would have on them. If our intersections followed the narrow definition, 
the time and distance the ego-vehicle travels inside them would be much smaller. This would 
reduce the number of VRU interactions and turning or crossing scenarios with lead, static or 
laterally moving objects, since the vehicle would spend less time in an intersection with the 
relevant objects. This would have an impact on the derived measures calculated from the 
trajectories of the vehicles in the intersection. It could also make crossing or turning more 
complicated to analyse in general, as it could create standstills after the ego-vehicle has waited to 
turn or cross but before entering the intersection. 

If we had selected the larger junction definition as our definition of intersections, we would see a 
reduction in the number of instances of e.g., minimum distance to the lead object in an intersection, 
as there could be multiple crossings back-to-back from which these values are calculated. Given 
the limited data from some Pilot sites, a reduction in the number of data points was not a desirable 
outcome. Furthermore, in a staggered junction there could be both a crossing and a turning 
manoeuvre taking place inside it. This would break the strict separation of turning and crossing 
scenarios as designed in the methodology. 

For these reasons, we decided to define the intersections as something in between the narrow 
intersection definition and the broad junction definition used by CARE. 

The intersections were drawn by hand on satellite imagery with the help of video data captured by 
the ego-vehicle. This drawing produced for each intersection a set of coordinates that represent 
the boundaries of the intersection as a polygon. This allowed for the use of the GPS data captured 
by the ego-vehicle to determine whether the vehicle was inside the intersection or how close it was 
to it. The boundaries were set based on road markings, width of the road or lane, curvature of the 
road or lane, and, as a last resort, by visually comparing them to similar intersections with the 
above-mentioned features present. 
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If there were road markings indicating where the vehicles should stop to wait to enter the 
intersection, the boundary was set to overlap that line. At times there were separate road markings 
indicating where cyclists should stop, but these were not used in defining the intersection, as the 
main focus of the exercise was to find when the ego-vehicle was inside an intersection. 

The other main type of road marking used to determine the boundaries of an intersection was 
pedestrian crossings, when they were seen to be part of the intersection system (for example, 
based on closeness and the presence of traffic lights for pedestrians). The boundary was drawn 
with the pedestrian crossings within the intersection. Otherwise, the pedestrian crossing would 
have had to be counted as a separate intersection as was done for pedestrian crossings on line 
sections of the road. This would have caused problems for the evaluation. For example, there 
would have been intersections the ego-vehicle never approached, as the next intersection on its 
path would have been the pedestrian crossing and there would have been no distance to the 
intersection used by vehicles. Additionally, the time and distance the ego-vehicle spent inside the 
pedestrian crossing intersection would have been small, which would have made calculating the 
relevant derived measures more difficult. It was decided that including the pedestrian crossing as 
part of the intersection and calculating the derived measures separately for vehicle and VRU object 
classes would produce more meaningful data representing how the ego-vehicle acts at 
intersections. 

Other road markings used were changes in the lane markings, such as switching from dashed to 
solid. In case no road markings were present at all, or they were inconclusive, other features of the 
intersection were considered. These included the curvature or width of the road or lane, as they 
are often used to make more room for vehicles to perform a turning manoeuvre. As a last resort, if 
no features could be used to select where the intersections starts or they were occluded by 
buildings, for instance, the intersection was visually compared to similar ones within the same city 
and the boundaries were selected based on those. 

All the intersections were drawn for each Pilot site independently. These were then compared 
during a workshop to make sure that the selection criteria and resulting boundaries matched those 
of the other Pilot sites. Additionally, for each intersection the type (X/T/Y intersection, roundabout, 
etc.) and the priority rule (traffic signs and road markings only, traffic lights with or without partial 
conflicts, etc.) of the intersection were coded according to the UDRIVE codebook. 
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Annex 4 Bootstrapping 

In the urban Technical and Traffic Evaluation there were three Pilot sites. One of them contributed 
a large number of driving hours compared to the others. Consequently, also the number of 
scenario instances was considerably higher for one Pilot site, for many scenarios. This posed a 
challenge to the data analysis, because simply pooling the data would mean that results from a 
single Pilot site would dominate the results. This would have compromised the aim to evaluate 
urban ADFs in general. To balance the contribution of all the urban Pilot sites an additional 
bootstrapping step was performed before the data was uploaded to the CDB. 

In technical terms, the urban Technical and Traffic Evaluation had a class imbalance problem, 
meaning that the majority class had more data points than the minority class(es). Consequently, 
the statistical model based on the data might not capture the properties of the minority class and 
would not generalise to new data well. A straightforward solution to address a class imbalance 
problem is to either undersample the majority class or oversample the minority classes. 
Undersampling means that samples smaller than the original data are drawn with replacement to 
represent the majority class. In oversampling, samples larger than the original data are drawn with 
replacement to represent the minority class. 

In the present case, 50 sampling rounds were performed. In each round, the largest Pilot site was 
undersampled and for the two smaller sites the sample size was the same as their original data. 
The samples obtained in each sampling round was pooled and uploaded to the CDB with an extra 
variable indicating the sampling round. In effect, this created 50 datasets representing the original 
data in a more balanced way. In other words, the process was similar to using bootstrapping to 
estimate statistical indicators. 

An alternative to the bootstrapping process would have been to create synthetic data based on the 
minority classes. However, these procedures are potentially complex, and the validity of the data 
would have needed to be ensured. Another alternative would have been to make the analysis 
separately for each Pilot site and then weight the results. However, this would have required 
complex procedures to ensure the confidentiality of the Pilot sites and no data could have been 
shared. 

A4.1. Noise 
This bootstrapping step creates another challenge for data confidentiality. The data points at 
smaller sites are more likely to be sampled in multiple rounds. Consequently, the data from 
minority sites were more likely to be repeated multiple times and, at least in theory, it would be 
possible to distinguish larger Pilot sites from the others. To make the identification of data sources 
less feasible, a small amount of normal noise was added to the variables of interest. This 
procedure, also called smooth bootstrapping, ensured the uniqueness of data points. The added 
noise also had the effect of smoothing the distributions. 
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A4.2. Implications for Statistical Inference 
In a typical bootstrapping process, a large number of samples are drawn with replacement from the 
original data. Based on the samples, the statistical indicators for the original data such as mean or 
median and their variance can be estimated based on the samples. In short, the bootstrap-based 
estimation is performed by calculating the statistical indicator for each sample and then deriving 
the variance estimates based on the distribution of the sample indicators. 

Bootstrapped variance estimates are unbiased when the bootstrap sample size is equal to the 
original data size (Efron & Tibshirani, 1986). Using a different sample size influences the variance 
estimated. In case of undersampling the variance estimates become larger, and with oversampling 
smaller. 

To illustrate the effect of the under- and oversampling, a simulation was performed. Two datasets 
were generated, one representing “baseline” and another “treatment”. Both datasets had a variable 
of interest y. For the baseline, the 100 data points were drawn from a normal distribution N(1, 4). 
For the treatment, also 100 data points values were drawn from N(1.5, 4). The resulting datasets 
had M=1.14 and M=1.85 respectively. 

Next, both datasets were sampled at different sample sizes. The term sampling factor is used to 
represent that size of the sample relative to the original data size. A sampling factor of one means 
that the bootstrapped sample size was equal to the original number of data points. Sampling 
factors of less than one represent undersampling (e.g., 0.2 = 20% of the original data size), and 
larger than one oversampling (e.g., 2 = 200% of the original data size). In the simulation, 50 
sampling rounds were done. 

Figure A4.1 shows how the sample means and their 1.96 * standard error for the baseline and 
treatment groups change with the sampling factor. The standard error of the mean increases when 
the sampling factor decreases (undersampling) and decreases when the sampling factor increases 
(oversampling). 
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Figure A4.1: Sample means (dots) and their 1.96 standard errors as a function of the sampling 
factor for simulated baseline and treatment datasets. The true means of the simulated are data 
shown as dashed lines. 

The implications for the statistical inference are clear. Undersampling increases the risk of type II 
error (false negative), while oversampling increases the risk of type I error (false positive). 
Consequently, undersampling of the majority site makes statistical inference based on the 
confidence intervals more conservative as the confidence intervals increase. 

Trip PIs and scenario instances were composed of multiple values. Consequently, the 
bootstrapping procedure preserved the correlations between the different values, e.g., speed and 
acceleration, within the scenario instances and trips. However, as scenario instances and Trip PIs 
were treated as independent observations, correlations between different types of scenarios are 
not preserved. 

A4.3. Algorithm 
The bootstrapping step was implemented in the data_sampler.py script. For each file type 
(scenarios and Trip PIs) the following steps were performed: 

1. The sample sizes were determined manually for each Pilot site and file type so that data would 
be in balance. 

2. The data files generated by the urban tool chain were read into a data frame. 

3. Variables which could not be shared were filtered out. 

The processing differed slightly for Trip PIs and scenario instances. 

For trips, steps 4 and 5 were performed. 

4. A single trip was represented by four rows in the data representing baseline, ADF, System 
available, and System unavailable conditions (see Bellotti et al., 2020, Chapter 3.1). In the 
sampling process, these four rows were treated as single observation. 
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5. Random samples with replacement were drawn among all the trips. 

For scenario instances, steps 6 and 7 were performed. 

6. A single scenario instance was represented by a single row in the data. Scenario instances 
were first divided into baseline and ADF conditions (System_available and 
System_unavailable were not used). 

7. Random samples with replacement were drawn from the baseline and ADF scenarios. Sample 
sizes for the baseline and ADF could be different. 

8. Steps 4 and 5 or 6 and 7 were repeated 50 times to generate 50 datasets. 

9. To make it difficult to infer which observations were repeated in the sampling process, a small 
amount of noise was added to all the measurement variables and to certain index-based 
variables (Scenario_Start_Index, Number_of_Samples). For measurement variables, the noise 
was generated from normal distribution with the mean at zero, and the standard deviation set 
to be equal to 1% of the standard deviation in the original data. For the index-based variables, 
a single integer between -3 and 3 was drawn from a uniform distribution. 

10. The resulting datasets were stored with new unique TripIDs generated based on the original 
ID, sampling round, and Pilot site-specific salt key. Information on the sampling round was 
preserved. 
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Annex 5 AIM Results (normal driving behaviour at an urban roundabout) 

A5.1. RQ-T12-1 / Car Following 
Figure A5.1 shows the results for normal behaviour in car-following regarding the phases entering, 
circling, and exiting the roundabout. While the minimum THW and minimum TTC values in the 
circling phase are the lowest, the average THW values in the circling phase are higher than the 
other two phases. Note that trajectory errors could lead to THW or TTC values close to zero.  

 

Figure A5.1: Values of average THW (left), minimum THW (middle) and minimum TTC (right) in 
car-following. 

A5.2. RQ-T12-2 / VRU Behaviour 
Figure A5.2 shows the results of the interaction of human drivers with VRUs (cyclists: top, 
pedestrians: bottom) at the eastern arm of the roundabout. Here, the variables PET, TAdv and THW 
were computed for yielding and non-yielding of the vehicle in the roundabout. While the PET 
values between human drivers and cyclists are very similar in yielding and non-yielding, the PET is 
smaller in case of yielding to pedestrians. The TAdv values are larger in case of non-yielding than 
yielding but differ largely from the values in case of yielding to pedestrians than in case of non-
yielding. The THW values are larger in case of non-yielding than in the case of yielding. In case of 
non-yielding the THW values for cyclists are larger than for pedestrians. 



  

Deliverable D7.3 / 29.09.2021 / version 1.0 Final 203 

  

 

Figure A5.2:  Interaction of the vehicle in the roundabout with cyclists (top) and pedestrians 
(bottom): PET values (left); TAdv values at the moment the vehicle is about to leave the roundabout 
(middle), positive and negative values respectively indicate the time advantage of the vehicle or 
VRU; THW values between the VRU and the crossing point, at the moment the vehicle is about to 
leave the roundabout (right). 

A5.3. RQ-T14-1 / Near-Crash Frequency (Vehicles) 
Table A5.1 gives the relevant information on near-crash frequencies based on the minimum TTC in 
car-following scenarios. 

Table A5.1: Information on near-crash frequencies in car following scenarios. 

 All Minimum TTC < 2s Minimum TTC < 1s 
Phase N N/h N N/h N N/h 

Entering 48430 139 2259 6 560 2 

Circling 8196 24 3230 9 628 2 

Exiting 24233 70 4400 13 3046 9 

Sum 80859 233 9889 28 4234 13 
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Table A5.2 gives the relevant information on near-crash frequencies based on the minimum TTC in 
merging scenarios.  

Table A5.2: Information on near-crash frequencies in merging scenarios. 

 All PET < 2s PET < 1s 
Sub-scenario N N/h N N/h N N/h 

Non-yielding 12889 37 1174 3.4 19 0.1 

Yielding 17282 50 4276 12.3 19 0.1 

Sum 30171 87 5450 15.7 38 0.2 
 

A5.4. RQ-T14-2 / Near-Crash Frequency (VRU) 
Table A5.3 gives the relevant information on near-crash frequencies based on the PET. Altogether 
514 VRU crossing situations were considered. 

Table A5.3: Information on near-crash frequencies between vehicles and VRU. 

 All PET < 2s PET < 1s 
Interaction with Sub-scenario N N/h N N/h N N/h 

Cyclist 
Non-yielding 83 < 1 28 < 1 6 < 1 

Yielding 272 1 72 < 1 3 < 1 

Pedestrian 
Non-yielding 43 < 1 7 < 1 0 0 

Yielding 116 < 1 14 < 1 0 0 
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Annex 6 AIM Results (normal driving behaviour at an urban 
intersection) 

In the analysis of normal driving behaviour at a signalised urban intersection in Braunschweig, 
Germany, we focused on kinematic and interaction behaviour of a vehicle (turning left or right, 
going straight) with oncoming road users (VRU and motorised vehicles). Altogether, 30 days of 
trajectory data on the relevant scenarios from different months in 2018 and 2019 were analysed. 
Figure A6.1 shows the relevant scenarios: 

Scenario L1: Left-turning following vehicle from west to north interacting with lead vehicle from 
west to north (Figure A6.1, path 1), 

Scenario L2: Left-turning vehicle from west to north interacting with oncoming vehicle from east to 
west (Figure A6.1, paths 1 and 2), 

Scenario L3: Left-turning vehicle from west to north interacting with oncoming bicycle (Figure A6.1, 
paths 1 and 5), 

Scenario R1: Right-turning following vehicle from east to north interacting with lead vehicle from 
east to north (Figure A6.1, path 3), 

Scenario R2: Right-turning vehicle from east to north interacting with bicycle from east to west 
(Figure A6.1, paths 3 and 4), 

Scenario S: Straight driving following vehicle from east to west interacting with lead vehicle from 
east to west (Figure A6.1, path 2). 

For the analysis, the paths of the road users were divided into several relevant phases. For 
instance, in the case of scenario R2 the four phases "approaching", "turning", "conflict" and 
"exiting" were considered, while in case of scenario L3, six phases "approaching", "queuing", 
"conflict" and "exiting/approaching", "conflict" and "exiting" were considered. 
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Figure A6.1:  Vehicle (blue) and bicycle (red) trajectory paths and phases (picture owned by DLR). 

A6.1. Interaction with oncoming road users 
For normal driving and interaction behaviour with oncoming road users, the scenarios R2, L2 and 
L3 and their sub-scenarios "yielding" and "non-yielding" were analysed. “Non-yielding” and 
“yielding” was taken from the perspective of the turning vehicle. For instance, the situation is 
categorised as “yielding” if the turning vehicle gives way to an oncoming bicycle. In contrast, the 
situation is characterised as "non-yielding" if the turning vehicle does not give way to an oncoming 
bicycle. Table A6.1 summarises the mean values of relevant performance indicators (PI) according 
to the RQs (see Section 3.8) regarding the vehicle acceleration, driven speed, interaction 
behaviour, traffic flow / journey times, and the number of incidents and near-crashes.  
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Table A6.1: Relevant PI in case of the interaction scenarios R2, L2 and L3. 

RQ PI Uni
t 

Right turning 
vehicle vs 
bicycle (R2) 

Left turning 
vehicle vs 
bicycle (L3) 

Left turning 
vehicle vs 
oncoming 
vehicle (L2) 

Non-
yieldin
g 

Yieldin
g 

Non-
yieldin
g 

Yieldin
g 

Non-
yieldin
g 

Yieldin
g 

6 
(longitudina
l 
acceleration
) 

max(a) m/s
² 

2.81 2.95 2.48 2.49 2.44 2.45 

min(a) m/s
² 

-2.41 -3.22 -1.75 -1.87 -1.71 -1.80 

sd(a) m/s
² 

1.07 1.35 0.95 0.93 0.92 0.90 

8 
(longitudina
l speed) 

m(v) m/s 5.67 5.07 4.63 3.64 4.69 3.64 

max(v) m/s 8.96 10.03 10.97 10.58 10.75 10.80 

sd(v) m/s 1.42 2.26 2.91 2.83 2.81 2.98 

12 
(interaction 
behaviour) 

PET s 1.57 1.32 2.94 3.08 3.17 2.60 

THW(minTAdv) s 3.99 4.10 3.97 3.63 2.15 6.02 

Distance(minTAd
v) 

m 27.68 19.62 22.44 13.27 25.28 10.77 

13 (traffic 
flow / 
journey 
time) 

JT s 11.90 13.05 15.38 20.58 15.63 20.73 

14 (number 
of incidents 
/ near-
crashes) 

N/h - - - 3 1 24 4 

N/h 
PET < 1s 

- - - 0 0 1 0 
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Figure A6.2 shows the PIs for vehicle acceleration and driven speed in different phases of 
scenarios R2, L2 and L3. 

 

Figure A6.2: Aggregated results on driving behaviour indicators in scenarios R2, L2 and L3. 

A6.2. Interaction with leading vehicle (car following) 
The normal driving behaviour in car-following in scenarios L1, R1 and S were analysed. Each 
scenario was divided into two sub-scenarios according to whether the following vehicle has 
completely stopped in the process or not. Table A6.2 summarises the mean values of relevant PIs 
for vehicle acceleration, driven speed, interaction behaviour, traffic flow / journey times, and 
number of incidents and near-crashes. 
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Table A6.2: Aggregated results on relevant indicators for driving and interaction behaviour in 
scenarios R1, L1 and S. 

RQ PI Unit Right turning 
following 
vehicle vs 
leading vehicle 
(R1) 

Left turning 
following 
vehicle vs 
leading vehicle 
(L1) 

Straight driving 
following vs 
leading vehicle 
(S) 

Non-
stop 

Stop Non-
stop 

Stop Non-
stop 

Stop 

6 (longitudinal 
acceleration) 

max(a) m/s² 1.91 2.72 2.27 2.40 1.81 2.58 

min(a) m/s² -2.39 -2.67 -1.66 -2.03 -1.99 -2.25 

sd(a) m/s² 0.99 1.11 0.82 0.89 0.78 1.20 

8 (longitudinal 
speed) 

m(v) m/s 6.71 3.23 4.04 2.97 11.85 8.69 

max(v) m/s 10.16 8.69 10.19 10.39 13.53 12.30 

sd(v) m/s 1.60 2.56 2.72 3.04 0.93 2.11 

12 (interaction 
behaviour) 

m(THW) s 2.39 2.69 6.67 12.16 2.41 4.62 

min(THW) s 1.77 1.41 1.43 1.45 2.12 3.19 

min(TTC) s 4.68 3.02 3.22 2.70 8.78 - 

13 (traffic flow / 
journey time) 

JT s 9.84 20.13 19.48 23.98 6.95 9.48 

14 (number of 
incidents / near-
crashes) 

N/h - 75.46 4.44 10.98 11.21 80.9 0.01 

N/h 
TTC < 1s 

- 0.57 0.07 0.94 1.1 1.89 0 
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Figure A6.3 shows the relevant PIs for vehicle acceleration, driven speed, and interaction 
behaviour in different phases of scenarios R1, L1 and S. 

 

Figure A6.3: Aggregated results on driving behaviour indicators in scenarios R1, L1 and S. 
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