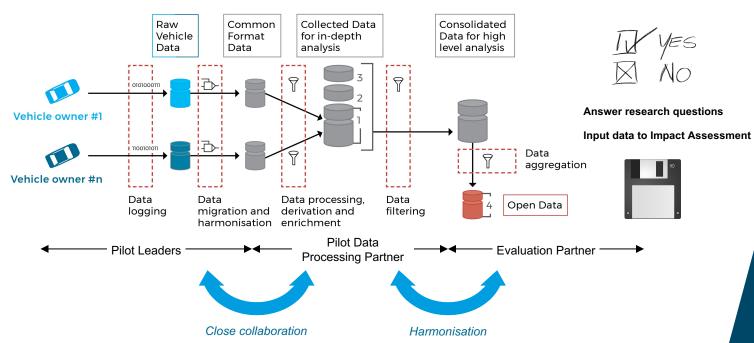


Method for Technical & Traffic Evaluation

L3Pilot Final Event

Hendrik Weber ika RWTH Aachen University



Data Flow for Evaluation

Vehicle Data (e.g. CAN)
Videos (external & internal)
User Questionnaires

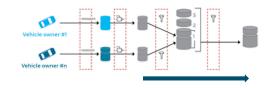
Challenges for data evaluation

Challenge:

- Analysis needs to include data coming from <u>various pilot sites</u>, various ADF implementations
- Evaluation methods and tool should <u>not allow benchmarking</u> between the different pilot sites or re-engineering of systems

Chosen approach:

- Anonymous upload of performance indicators derived from vehicle data
 - Performance indicators linked to individual research questions
 - Only necessary meta data
- Unaggregated **questionnaire data** (without free text)
 - Minimum amount of meta data (e.g. to tell apart data urban and motorway ADF)

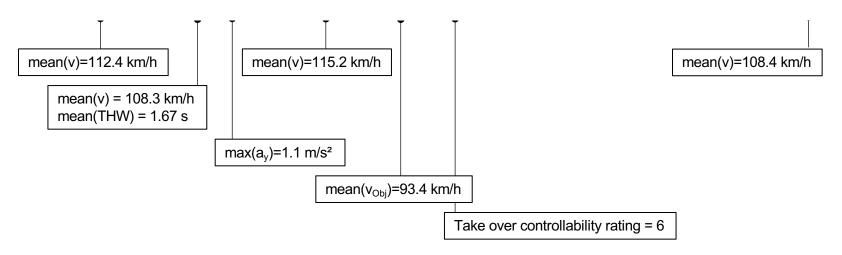

Basic approach Analysis based on driving scenarios

Driving Scenario: Short period of driving defined by main driving task or triggering event

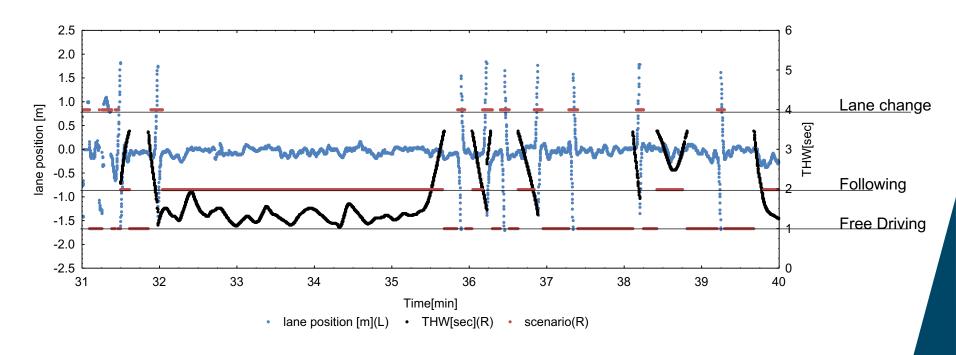
- Instances of Driving Scenarios are the basic unit for analysis
- Allow harmonized analysis and merging of data on level of driving scenarios

Performance Indicator: Measure per instance of Driving Scenarios or per trip defined to answer research questions

 Common scripts for identifying driving scenarios in driving data and calculating performance indicators


Motorway + Urban	Urban only
Free driving	Crossing
Approaching a lead object	Crossing with laterally moving object / VRU
Following a lead object	Turning (without conflict)
Driving in traffic jam	Turning with lead object
Lane change	Turning with laterally moving object / VRU
Cut-in	Overtaking of oncoming traffic

Theoretical Example of Scenario-based Assessment


Segmenting the drive into instances of the defined driving scenarios

Identifying Scenarios in Real World Data

Performance indicators

- Most indicators used for describing behaviour of the ADF are derived per driving scenario instance and describe continuous vehicle signals e.g.
 - Mean speed: m(v)
 - Mean Time Headway: m(THW)

- Std. deviation of lat. Acceleration: $sd(a_y)$
- Minimum longitudinal acceleration: min(ax)
- Indicators describing the functionality of the ADF are derived per trip for trip sections within ODD e.g.
 - Frequency of Take-over requests: f(TOR)
- % of time automated driving function is available
- Indicators describing the frequency of events per hour / per km
 - Frequency of driving scenarios: f(Cut In)
- Frequency of incidents: f(TTC < 1.75 s)

Statistical Testing

What is the impact of ADF on the accuracy of driving?

How to answer the defined research questions?

- Non-parametrical tests are used (mostly Mann-Whitney-U-test)
 - One procedure can be used for all parameters, it is not necessary to use different procedures
 or tests based on characteristics of data
 - One test per parameter and situational combination which tests for differences between experimental conditions (baseline vs. ADF active).
 - Impact of other factors (e.g. scenario type, situational factors) is not considered directly but addressed in multiple tests.

Additional Information

- Additionally, reporting of effect size and change in percent
 - Because of the large sample sizes (especially for scenario based indicators)
 almost everything will turn out significant
 - Effect size & descriptive information are necessary to understand the relevance of the effects
- Calculation of effect size (Cohen's D)

•
$$D = \frac{\mu_{ADF} - \mu_{BL}}{\sigma}$$
 with σ estimated as $s = \sqrt{\frac{(n_{ADF} - 1)s_{ADF}^2 + (n_{BL} - 1)s_{BL}^2}{n_{ADF} + n_{BL} - 2}}$

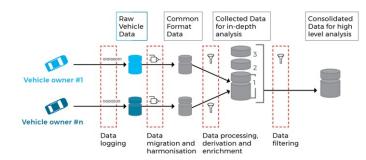
- Calculation of change in percent
 - For Performance Indicator *X*: Change = $\frac{X_{ADF} X_{BL}}{X_{BL}}$

Chunking of Long Scenarios

- Scenario instances will have different durations especially Following lead vehicle and Uninfluenced driving
- This affects our ability to correctly answer Research Questions
 - Performance indicators are influenced by scenario duration
 - Scenario durations are different for BL and ADF

Potential confounding factor!

- To mitigate this confounding factor, data are chunked to 10 s intervals for Uninfluenced Driving and for Following lead vehicle
- After this, the standard non-parametric test can be applied


Uninfluenced Driving					Cut-in	Uninfluenced Driving			Cut-in		
UD	UD	UD	UD	UD	UD		UD	UD	UD		

Lessons learnt from the evaluation

- L3Pilot Common data format (CDF) was a key enabler for a harmonised evaluation
 - → Available at https://github.com/l3pilot/l3pilot-cdf
- Sharing the code for the toolchain and a collaborative testing create consistency in data evaluation across pilot sites
- Checks to ensure data format and quality are appropriate
 - Ensure that no unit conversion errors are present
 - Check that scenarios are detected correctly in different countries & environments
- Problems you notice too late, require a complete update of database contents
 - → We had to make 5 re-uploads until we got to our final dataset.

Thank you for your kind attention.

Hendrik Weber hendrik.weber@ika.rwth-aachen.de

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723051.