

Piloting Site Questionnaire: User and Acceptance Evaluation

L3Pilot Final Event

Professor Natasha Merat **Dr Yee Mun Lee**, Dr Ruth Madigan, Dr Tyron Louw

Pilot Sites and Questionnaire: 3 Urban Chauffer and 11 Motorway Chauffer

System Description in Brief

With the Motorway Chauffeur the car adapts to various traffic conditions. It follows the lane and adjusts speed considering various factors such as keeping a safe distance to the vehicle in front or following the speed limit. If a preceding slower vehicle is detected the car overtakes automatically as soon as it is safely possible. **MOTORWAY CHAUFFEUR** SAE LEVEL 0 1 2 3 4 5

Capabilities

- Automatic Lane Changes
- Speed/Distance
- Lane Keeping/Centring/Following
- Motorway Exits and Entrances

Limitations

- Construction sites
- Extreme weather (i.e. heavy rain and snow)
- Night time

13.10.2021

Motorway Chauffeur System - Method

Motorway Chauffeur System - Method

May 2019 – September 2021

Various Locations in Europe Traffic: quiet→ traffic jam

Ave: 1 to 1.5 hours

Min: 30 mins, Max: 6 hours

Between 60 and 133km

Urban Chauffeur System

Capabilities

Detect Vulnerable Road Users

Limitations

- Extreme weather (i.e. heavy rain/snow)
- Detection of traffic lights

Urban Chauffeur System - Method

Most of the participants were front seat PASSENGERS, and they were asked to

Focus, observe and experience the system

In some studies: allowed to engage in a secondary task because they were the passengers

In some studies: participants were also asked to imagine sitting in the driver's seat be aware of the take-over request from the vehicles.

13.10.2021

Urban Chauffeur System - Method

September 2020 to November 2020

Several locations in Europe. Multiple-lane urban roads, including signalised and non-signalised intersections, pedestrian crossings, traffic lights, presence of bicycle lanes. The speed limit of urban roads were 50 km/h.

The test routes were 2.4 km to 2.8 km per route, the drives were between 10 and 40 mins (one or two laps).

Overall Method

Briefing:

Motorway:

Urban:

Practice Drive:

Motorway:

√

Urban: NA

- Monitoring hazards & the system
- Prompt the driver to take over during critical situation
- In some cases, taking over control
- Triggering Level 3 availability
- Ensuring travel directions were correct

- Seated in the driver's seat
- Similar role as Safety Driver on Motorway
- Did not have to warn the passengers

User Acceptance & Evaluation

User Acceptance & Awareness

- Are drivers willing to use an Automated Driving Function (ADF)?
- What is the user acceptance of the ADF?
- What is the impact of ADF on driver state?
- What is the impact of ADF use on driver awareness?
- What are drivers' expectations regarding system features?

User Experience

- What is drivers' secondary task engagement during ADF use?
- How do drivers respond when they are required to retake control?
- What is the impact of ADF use on motion sickness?

Data Grouping

Motorway (N = 354) Non-Professional Professional (N = 58) All Pilot Sites (N = 296)Pilot Site + WoZ Simulator (N = 236)(N = 60)

All Pilot Site
Professional Drivers (N = 15)
Passenger (N = 160)

Willingness to Use — Perceived Safety/Trust/Usefulness

Motorway - Non-Professional Pilot Site/WoZ

System Performance

Motorway – Non-Professional - Simulator

Motorway - Non-Professional - Pilot Site / WoZ

Motorway – Professional - Pilot Site

Urban - Mixed Participants - Pilot Site

The system acted appropriately in all situations

The system worked as it should work.

Secondary task engagement and driver comfort

- Engagement in Non-driving related activities was high for non-professional drivers in Motorway (82% and 98%); compared to professional drivers (41%) and Urban (56%)
 - music, radio, audiobook
 - navigation
 - interact with a passenger
 - smart phone apps, texting

- Majority agreed that the system was comfortable (average 88%), with no motion sickness (average 98%)
 - Less so for motorway junction areas and lane change behaviours (potentially when interactions were involved)

During the takeover, I always felt safe (Motorway)

Summary

- Drivers who experienced Motorway and Urban systems were generally positive
- Room for improvement to match users' expectations
- Professional drivers were less positive about the Motorway system than nonprofessional drivers.
- A hierarchical regression model showed that Willingness to Use increases with opportunity to engage in secondary tasks and the usefulness of the system.
- The hierarchical model also showed that in the Motorway, system familiarity and driver type did not affect Willingness to Use— but it did in Urban (small effect)
- Caveats:
 - Pilots studies
 - Urban: Passengers, not drivers.

Thank you for your kind attention.

Natasha Merat n.merat@its.leeds.ac.uk

Yee Mun Lee y.m.lee@leeds.ac.uk

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723051.