

SUMMER SCHOOL 2020

Safety Performance Assessment of Automated Driving

Virtual Experiments using stochastic (Monte-Carlo) Simulation

Problem Statement

- How can new technologies be objectively assessed with regard to their (side) effects prior to their introduction into traffic?
- Traffic sample size to achieve statistical power for performance assessment of Automated Driving (AD) is far too large for Naturalistic Driving Studies

Approach: Virtual Experiments

- (1) Modelling of current (stochastic) traffic processes as reference / baseline.
- (2) Generation of synthetic traffic scenarios using stochastic simulation.
- (3) Assessment-relevant distributions are tested on equivalence to real accident data.
- (4) Integration of AD simulation models with quantified model trustworthiness into the traffic process model.
- (5) Generation of a sufficiently large sample of the changed traffic process by means of stochastic simulation with integrated AD.
- (6) Performance of the measure compared to the reference traffic process is evaluated.

Key Challenge: Cause-Effect Models of Manual Traffic Processes

- Traffic processes need to be modeled taking into account stochastic variations in the cognitive and dynamic behavior of all road users (including cyclists, e-scooters, etc.).
- Odd sample combinations of the underlying distributions can lead to accidents and therefore have to be modeled realistically to generate validated performance estimates
- Model of variations in dynamic performance of E-Scooter drivers
 - Including parameters such as skill level, pertinent cognitive and perceptual features, dynamics and physical limitations
- Models of Human Cognitive Performance
 - Major causal factor in traffic accidents
 - Reduce problem complexity by modelling time until traffic conflict perception

Benefits

- Development accompanying tool that can be used for early impact analysis of technologies on the overall traffic context.
- Reduction of misdevelopments due to misjudged (side) effects in the overall traffic context
- Continuous cost efficient feedback on technology performance enables iterative optimization

(<u>www.save-in.de</u>), This work was supported by the BMVI, Germany; funding program: Automated and Connected Driving; grant no.: 16AVF2145F

www.L3Pilot.eu

Twitter@_L3Pilot_

LinkedInL3Pilot

